#! /usr/bin/env perl # Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the Apache License 2.0 (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. # CBC encrypt/decrypt performance in cycles per byte processed with # 128-bit key. # # aes-ppc.pl this # PPC74x0/G4e 35.5/52.1/(23.8) 11.9(*)/15.4 # PPC970/G5 37.9/55.0/(28.5) 22.2/28.5 # POWER6 42.7/54.3/(28.2) 63.0/92.8(**) # POWER7 32.3/42.9/(18.4) 18.5/23.3 # # (*) This is ~10% worse than reported in paper. The reason is # twofold. This module doesn't make any assumption about # key schedule (or data for that matter) alignment and handles # it in-line. Secondly it, being transliterated from # vpaes-x86_64.pl, relies on "nested inversion" better suited # for Intel CPUs. # (**) Inadequate POWER6 performance is due to astronomic AltiVec # latency, 9 cycles per simple logical operation. $flavour = shift; if ($flavour =~ /64/) { $SIZE_T =8; $LRSAVE =2*$SIZE_T; $STU ="stdu"; $POP ="ld"; $PUSH ="std"; $UCMP ="cmpld"; } elsif ($flavour =~ /32/) { $SIZE_T =4; $LRSAVE =$SIZE_T; $STU ="stwu"; $POP ="lwz"; $PUSH ="stw"; $UCMP ="cmplw"; } else { die "nonsense $flavour"; } $sp="r1"; $FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $code.=<<___; .machine "any" .text .align 7 # totally strategic alignment _vpaes_consts: Lk_mc_forward: # mc_forward .long 0x01020300, 0x05060704, 0x090a0b08, 0x0d0e0f0c ?inv .long 0x05060704, 0x090a0b08, 0x0d0e0f0c, 0x01020300 ?inv .long 0x090a0b08, 0x0d0e0f0c, 0x01020300, 0x05060704 ?inv .long 0x0d0e0f0c, 0x01020300, 0x05060704, 0x090a0b08 ?inv Lk_mc_backward: # mc_backward .long 0x03000102, 0x07040506, 0x0b08090a, 0x0f0c0d0e ?inv .long 0x0f0c0d0e, 0x03000102, 0x07040506, 0x0b08090a ?inv .long 0x0b08090a, 0x0f0c0d0e, 0x03000102, 0x07040506 ?inv .long 0x07040506, 0x0b08090a, 0x0f0c0d0e, 0x03000102 ?inv Lk_sr: # sr .long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f ?inv .long 0x00050a0f, 0x04090e03, 0x080d0207, 0x0c01060b ?inv .long 0x0009020b, 0x040d060f, 0x08010a03, 0x0c050e07 ?inv .long 0x000d0a07, 0x04010e0b, 0x0805020f, 0x0c090603 ?inv ## ## "Hot" constants ## Lk_inv: # inv, inva .long 0xf001080d, 0x0f06050e, 0x020c0b0a, 0x09030704 ?rev .long 0xf0070b0f, 0x060a0401, 0x09080502, 0x0c0e0d03 ?rev Lk_ipt: # input transform (lo, hi) .long 0x00702a5a, 0x98e8b2c2, 0x08782252, 0x90e0baca ?rev .long 0x004d7c31, 0x7d30014c, 0x81ccfdb0, 0xfcb180cd ?rev Lk_sbo: # sbou, sbot .long 0x00c7bd6f, 0x176dd2d0, 0x78a802c5, 0x7abfaa15 ?rev .long 0x006abb5f, 0xa574e4cf, 0xfa352b41, 0xd1901e8e ?rev Lk_sb1: # sb1u, sb1t .long 0x0023e2fa, 0x15d41836, 0xefd92e0d, 0xc1ccf73b ?rev .long 0x003e50cb, 0x8fe19bb1, 0x44f52a14, 0x6e7adfa5 ?rev Lk_sb2: # sb2u, sb2t .long 0x0029e10a, 0x4088eb69, 0x4a2382ab, 0xc863a1c2 ?rev .long 0x0024710b, 0xc6937ae2, 0xcd2f98bc, 0x55e9b75e ?rev ## ## Decryption stuff ## Lk_dipt: # decryption input transform .long 0x005f540b, 0x045b500f, 0x1a454e11, 0x1e414a15 ?rev .long 0x00650560, 0xe683e386, 0x94f191f4, 0x72177712 ?rev Lk_dsbo: # decryption sbox final output .long 0x0040f97e, 0x53ea8713, 0x2d3e94d4, 0xb96daac7 ?rev .long 0x001d4493, 0x0f56d712, 0x9c8ec5d8, 0x59814bca ?rev Lk_dsb9: # decryption sbox output *9*u, *9*t .long 0x00d6869a, 0x53031c85, 0xc94c994f, 0x501fd5ca ?rev .long 0x0049d7ec, 0x89173bc0, 0x65a5fbb2, 0x9e2c5e72 ?rev Lk_dsbd: # decryption sbox output *D*u, *D*t .long 0x00a2b1e6, 0xdfcc577d, 0x39442a88, 0x139b6ef5 ?rev .long 0x00cbc624, 0xf7fae23c, 0xd3efde15, 0x0d183129 ?rev Lk_dsbb: # decryption sbox output *B*u, *B*t .long 0x0042b496, 0x926422d0, 0x04d4f2b0, 0xf6462660 ?rev .long 0x006759cd, 0xa69894c1, 0x6baa5532, 0x3e0cfff3 ?rev Lk_dsbe: # decryption sbox output *E*u, *E*t .long 0x00d0d426, 0x9692f246, 0xb0f6b464, 0x04604222 ?rev .long 0x00c1aaff, 0xcda6550c, 0x323e5998, 0x6bf36794 ?rev ## ## Key schedule constants ## Lk_dksd: # decryption key schedule: invskew x*D .long 0x0047e4a3, 0x5d1ab9fe, 0xf9be1d5a, 0xa4e34007 ?rev .long 0x008336b5, 0xf477c241, 0x1e9d28ab, 0xea69dc5f ?rev Lk_dksb: # decryption key schedule: invskew x*B .long 0x00d55085, 0x1fca4f9a, 0x994cc91c, 0x8653d603 ?rev .long 0x004afcb6, 0xa7ed5b11, 0xc882347e, 0x6f2593d9 ?rev Lk_dkse: # decryption key schedule: invskew x*E + 0x63 .long 0x00d6c91f, 0xca1c03d5, 0x86504f99, 0x4c9a8553 ?rev .long 0xe87bdc4f, 0x059631a2, 0x8714b320, 0x6af95ecd ?rev Lk_dks9: # decryption key schedule: invskew x*9 .long 0x00a7d97e, 0xc86f11b6, 0xfc5b2582, 0x3493ed4a ?rev .long 0x00331427, 0x62517645, 0xcefddae9, 0xac9fb88b ?rev Lk_rcon: # rcon .long 0xb6ee9daf, 0xb991831f, 0x817d7c4d, 0x08982a70 ?asis Lk_s63: .long 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b ?asis Lk_opt: # output transform .long 0x0060b6d6, 0x29499fff, 0x0868bede, 0x214197f7 ?rev .long 0x00ecbc50, 0x51bded01, 0xe00c5cb0, 0xb15d0de1 ?rev Lk_deskew: # deskew tables: inverts the sbox's "skew" .long 0x00e3a447, 0x40a3e407, 0x1af9be5d, 0x5ab9fe1d ?rev .long 0x0069ea83, 0xdcb5365f, 0x771e9df4, 0xabc24128 ?rev .align 5 Lconsts: mflr r0 bcl 20,31,\$+4 mflr r12 #vvvvv "distance between . and _vpaes_consts addi r12,r12,-0x308 mtlr r0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .asciz "Vector Permutation AES for AltiVec, Mike Hamburg (Stanford University)" .align 6 ___ my ($inptail,$inpperm,$outhead,$outperm,$outmask,$keyperm) = map("v$_",(26..31)); { my ($inp,$out,$key) = map("r$_",(3..5)); my ($invlo,$invhi,$iptlo,$ipthi,$sbou,$sbot) = map("v$_",(10..15)); my ($sb1u,$sb1t,$sb2u,$sb2t) = map("v$_",(16..19)); my ($sb9u,$sb9t,$sbdu,$sbdt,$sbbu,$sbbt,$sbeu,$sbet)=map("v$_",(16..23)); $code.=<<___; ## ## _aes_preheat ## ## Fills register %r10 -> .aes_consts (so you can -fPIC) ## and %xmm9-%xmm15 as specified below. ## .align 4 _vpaes_encrypt_preheat: mflr r8 bl Lconsts mtlr r8 li r11, 0xc0 # Lk_inv li r10, 0xd0 li r9, 0xe0 # Lk_ipt li r8, 0xf0 vxor v7, v7, v7 # 0x00..00 vspltisb v8,4 # 0x04..04 vspltisb v9,0x0f # 0x0f..0f lvx $invlo, r12, r11 li r11, 0x100 lvx $invhi, r12, r10 li r10, 0x110 lvx $iptlo, r12, r9 li r9, 0x120 lvx $ipthi, r12, r8 li r8, 0x130 lvx $sbou, r12, r11 li r11, 0x140 lvx $sbot, r12, r10 li r10, 0x150 lvx $sb1u, r12, r9 lvx $sb1t, r12, r8 lvx $sb2u, r12, r11 lvx $sb2t, r12, r10 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm9-%xmm15 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm6, %r9, %r10, %r11, %rax ## ## .align 5 _vpaes_encrypt_core: lwz r8, 240($key) # pull rounds li r9, 16 lvx v5, 0, $key # vmovdqu (%r9), %xmm5 # round0 key li r11, 0x10 lvx v6, r9, $key addi r9, r9, 16 ?vperm v5, v5, v6, $keyperm # align round key addi r10, r11, 0x40 vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm1 vperm v1, $ipthi, $ipthi, v1 # vpshufb %xmm0, %xmm3, %xmm2 vxor v0, v0, v5 # vpxor %xmm5, %xmm1, %xmm0 vxor v0, v0, v1 # vpxor %xmm2, %xmm0, %xmm0 mtctr r8 b Lenc_entry .align 4 Lenc_loop: # middle of middle round vperm v4, $sb1t, v7, v2 # vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u lvx v1, r12, r11 # vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] addi r11, r11, 16 vperm v0, $sb1u, v7, v3 # vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k andi. r11, r11, 0x30 # and \$0x30, %r11 # ... mod 4 vperm v5, $sb2t, v7, v2 # vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = A vperm v2, $sb2u, v7, v3 # vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t lvx v4, r12, r10 # vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] addi r10, r11, 0x40 vperm v3, v0, v7, v1 # vpshufb %xmm1, %xmm0, %xmm3 # 0 = B vxor v2, v2, v5 # vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A vperm v0, v0, v7, v4 # vpshufb %xmm4, %xmm0, %xmm0 # 3 = D vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B vperm v4, v3, v7, v1 # vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C vxor v0, v0, v3 # vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D Lenc_entry: # top of round vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i vperm v5, $invhi, $invhi, v0 # vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k vxor v0, v0, v1 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j vperm v3, $invlo, $invlo, v1 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vperm v4, $invlo, $invlo, v0 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vand v0, v0, v9 vxor v3, v3, v5 # vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vperm v2, $invlo, v7, v3 # vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vmr v5, v6 lvx v6, r9, $key # vmovdqu (%r9), %xmm5 vperm v3, $invlo, v7, v4 # vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak addi r9, r9, 16 vxor v2, v2, v0 # vpxor %xmm1, %xmm2, %xmm2 # 2 = io ?vperm v5, v5, v6, $keyperm # align round key vxor v3, v3, v1 # vpxor %xmm0, %xmm3, %xmm3 # 3 = jo bdnz Lenc_loop # middle of last round addi r10, r11, 0x80 # vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo # vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 vperm v4, $sbou, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou lvx v1, r12, r10 # vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] vperm v0, $sbot, v7, v3 # vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t vxor v4, v4, v5 # vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k vxor v0, v0, v4 # vpxor %xmm4, %xmm0, %xmm0 # 0 = A vperm v0, v0, v7, v1 # vpshufb %xmm1, %xmm0, %xmm0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .globl .vpaes_encrypt .align 5 .vpaes_encrypt: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r6 mfspr r7, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r7,`$FRAME-4`($sp) # save vrsave li r0, -1 $PUSH r6,`$FRAME+$LRSAVE`($sp) mtspr 256, r0 # preserve all AltiVec registers bl _vpaes_encrypt_preheat ?lvsl $inpperm, 0, $inp # prepare for unaligned access lvx v0, 0, $inp addi $inp, $inp, 15 # 15 is not a typo ?lvsr $outperm, 0, $out ?lvsl $keyperm, 0, $key # prepare for unaligned access lvx $inptail, 0, $inp # redundant in aligned case ?vperm v0, v0, $inptail, $inpperm bl _vpaes_encrypt_core andi. r8, $out, 15 li r9, 16 beq Lenc_out_aligned vperm v0, v0, v0, $outperm # rotate right/left mtctr r9 Lenc_out_unaligned: stvebx v0, 0, $out addi $out, $out, 1 bdnz Lenc_out_unaligned b Lenc_done .align 4 Lenc_out_aligned: stvx v0, 0, $out Lenc_done: li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtlr r6 mtspr 256, r7 # restore vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_encrypt,.-.vpaes_encrypt .align 4 _vpaes_decrypt_preheat: mflr r8 bl Lconsts mtlr r8 li r11, 0xc0 # Lk_inv li r10, 0xd0 li r9, 0x160 # Ldipt li r8, 0x170 vxor v7, v7, v7 # 0x00..00 vspltisb v8,4 # 0x04..04 vspltisb v9,0x0f # 0x0f..0f lvx $invlo, r12, r11 li r11, 0x180 lvx $invhi, r12, r10 li r10, 0x190 lvx $iptlo, r12, r9 li r9, 0x1a0 lvx $ipthi, r12, r8 li r8, 0x1b0 lvx $sbou, r12, r11 li r11, 0x1c0 lvx $sbot, r12, r10 li r10, 0x1d0 lvx $sb9u, r12, r9 li r9, 0x1e0 lvx $sb9t, r12, r8 li r8, 0x1f0 lvx $sbdu, r12, r11 li r11, 0x200 lvx $sbdt, r12, r10 li r10, 0x210 lvx $sbbu, r12, r9 lvx $sbbt, r12, r8 lvx $sbeu, r12, r11 lvx $sbet, r12, r10 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## Decryption core ## ## Same API as encryption core. ## .align 4 _vpaes_decrypt_core: lwz r8, 240($key) # pull rounds li r9, 16 lvx v5, 0, $key # vmovdqu (%r9), %xmm4 # round0 key li r11, 0x30 lvx v6, r9, $key addi r9, r9, 16 ?vperm v5, v5, v6, $keyperm # align round key vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm2 vperm v1, $ipthi, $ipthi, v1 # vpshufb %xmm0, %xmm1, %xmm0 vxor v0, v0, v5 # vpxor %xmm4, %xmm2, %xmm2 vxor v0, v0, v1 # vpxor %xmm2, %xmm0, %xmm0 mtctr r8 b Ldec_entry .align 4 Ldec_loop: # # Inverse mix columns # lvx v0, r12, r11 # v5 and v0 are flipped # vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u # vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t vperm v4, $sb9u, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u subi r11, r11, 16 vperm v1, $sb9t, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t andi. r11, r11, 0x30 vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch # vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt vperm v4, $sbdu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch vperm v1, $sbdt, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch # vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch # vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt vperm v4, $sbbu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch vperm v1, $sbbt, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt vxor v5, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch # vmovdqa 0x40(%r10), %xmm4 # 4 : sbeu vxor v5, v5, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch # vmovdqa 0x50(%r10), %xmm1 # 0 : sbet vperm v4, $sbeu, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu vperm v5, v5, v7, v0 # vpshufb %xmm5, %xmm0, %xmm0 # MC ch vperm v1, $sbet, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet vxor v0, v5, v4 # vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vxor v0, v0, v1 # vpxor %xmm1, %xmm0, %xmm0 # 0 = ch Ldec_entry: # top of round vsrb v1, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i vperm v2, $invhi, $invhi, v0 # vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vxor v0, v0, v1 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j vperm v3, $invlo, $invlo, v1 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vperm v4, $invlo, $invlo, v0 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vand v0, v0, v9 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vxor v4, v4, v2 # vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vperm v2, $invlo, v7, v3 # vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vmr v5, v6 lvx v6, r9, $key # vmovdqu (%r9), %xmm0 vperm v3, $invlo, v7, v4 # vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak addi r9, r9, 16 vxor v2, v2, v0 # vpxor %xmm1, %xmm2, %xmm2 # 2 = io ?vperm v5, v5, v6, $keyperm # align round key vxor v3, v3, v1 # vpxor %xmm0, %xmm3, %xmm3 # 3 = jo bdnz Ldec_loop # middle of last round addi r10, r11, 0x80 # vmovdqa 0x60(%r10), %xmm4 # 3 : sbou vperm v4, $sbou, v7, v2 # vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou # vmovdqa 0x70(%r10), %xmm1 # 0 : sbot lvx v2, r12, r10 # vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 vperm v1, $sbot, v7, v3 # vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t vxor v4, v4, v5 # vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k vxor v0, v1, v4 # vpxor %xmm4, %xmm1, %xmm0 # 0 = A vperm v0, v0, v7, v2 # vpshufb %xmm2, %xmm0, %xmm0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .globl .vpaes_decrypt .align 5 .vpaes_decrypt: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r6 mfspr r7, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r7,`$FRAME-4`($sp) # save vrsave li r0, -1 $PUSH r6,`$FRAME+$LRSAVE`($sp) mtspr 256, r0 # preserve all AltiVec registers bl _vpaes_decrypt_preheat ?lvsl $inpperm, 0, $inp # prepare for unaligned access lvx v0, 0, $inp addi $inp, $inp, 15 # 15 is not a typo ?lvsr $outperm, 0, $out ?lvsl $keyperm, 0, $key lvx $inptail, 0, $inp # redundant in aligned case ?vperm v0, v0, $inptail, $inpperm bl _vpaes_decrypt_core andi. r8, $out, 15 li r9, 16 beq Ldec_out_aligned vperm v0, v0, v0, $outperm # rotate right/left mtctr r9 Ldec_out_unaligned: stvebx v0, 0, $out addi $out, $out, 1 bdnz Ldec_out_unaligned b Ldec_done .align 4 Ldec_out_aligned: stvx v0, 0, $out Ldec_done: li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtlr r6 mtspr 256, r7 # restore vrsave lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_decrypt,.-.vpaes_decrypt .globl .vpaes_cbc_encrypt .align 5 .vpaes_cbc_encrypt: ${UCMP}i r5,16 bltlr- $STU $sp,-`($FRAME+2*$SIZE_T)`($sp) mflr r0 li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mfspr r12, 256 stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r12,`$FRAME-4`($sp) # save vrsave $PUSH r30,`$FRAME+$SIZE_T*0`($sp) $PUSH r31,`$FRAME+$SIZE_T*1`($sp) li r9, -16 $PUSH r0, `$FRAME+$SIZE_T*2+$LRSAVE`($sp) and r30, r5, r9 # copy length&-16 andi. r9, $out, 15 # is $out aligned? mr r5, r6 # copy pointer to key mr r31, r7 # copy pointer to iv li r6, -1 mcrf cr1, cr0 # put aside $out alignment flag mr r7, r12 # copy vrsave mtspr 256, r6 # preserve all AltiVec registers lvx v24, 0, r31 # load [potentially unaligned] iv li r9, 15 ?lvsl $inpperm, 0, r31 lvx v25, r9, r31 ?vperm v24, v24, v25, $inpperm cmpwi r8, 0 # test direction neg r8, $inp # prepare for unaligned access vxor v7, v7, v7 ?lvsl $keyperm, 0, $key ?lvsr $outperm, 0, $out ?lvsr $inpperm, 0, r8 # -$inp vnor $outmask, v7, v7 # 0xff..ff lvx $inptail, 0, $inp ?vperm $outmask, v7, $outmask, $outperm addi $inp, $inp, 15 # 15 is not a typo beq Lcbc_decrypt bl _vpaes_encrypt_preheat li r0, 16 beq cr1, Lcbc_enc_loop # $out is aligned vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vxor v0, v0, v24 # ^= iv bl _vpaes_encrypt_core andi. r8, $out, 15 vmr v24, v0 # put aside iv sub r9, $out, r8 vperm $outhead, v0, v0, $outperm # rotate right/left Lcbc_enc_head: stvebx $outhead, r8, r9 cmpwi r8, 15 addi r8, r8, 1 bne Lcbc_enc_head sub. r30, r30, r0 # len -= 16 addi $out, $out, 16 beq Lcbc_unaligned_done Lcbc_enc_loop: vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vxor v0, v0, v24 # ^= iv bl _vpaes_encrypt_core vmr v24, v0 # put aside iv sub. r30, r30, r0 # len -= 16 vperm v0, v0, v0, $outperm # rotate right/left vsel v1, $outhead, v0, $outmask vmr $outhead, v0 stvx v1, 0, $out addi $out, $out, 16 bne Lcbc_enc_loop b Lcbc_done .align 5 Lcbc_decrypt: bl _vpaes_decrypt_preheat li r0, 16 beq cr1, Lcbc_dec_loop # $out is aligned vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vmr v25, v0 # put aside input bl _vpaes_decrypt_core andi. r8, $out, 15 vxor v0, v0, v24 # ^= iv vmr v24, v25 sub r9, $out, r8 vperm $outhead, v0, v0, $outperm # rotate right/left Lcbc_dec_head: stvebx $outhead, r8, r9 cmpwi r8, 15 addi r8, r8, 1 bne Lcbc_dec_head sub. r30, r30, r0 # len -= 16 addi $out, $out, 16 beq Lcbc_unaligned_done Lcbc_dec_loop: vmr v0, $inptail lvx $inptail, 0, $inp addi $inp, $inp, 16 ?vperm v0, v0, $inptail, $inpperm vmr v25, v0 # put aside input bl _vpaes_decrypt_core vxor v0, v0, v24 # ^= iv vmr v24, v25 sub. r30, r30, r0 # len -= 16 vperm v0, v0, v0, $outperm # rotate right/left vsel v1, $outhead, v0, $outmask vmr $outhead, v0 stvx v1, 0, $out addi $out, $out, 16 bne Lcbc_dec_loop Lcbc_done: beq cr1, Lcbc_write_iv # $out is aligned Lcbc_unaligned_done: andi. r8, $out, 15 sub $out, $out, r8 li r9, 0 Lcbc_tail: stvebx $outhead, r9, $out addi r9, r9, 1 cmpw r9, r8 bne Lcbc_tail Lcbc_write_iv: neg r8, r31 # write [potentially unaligned] iv li r10, 4 ?lvsl $outperm, 0, r8 li r11, 8 li r12, 12 vperm v24, v24, v24, $outperm # rotate right/left stvewx v24, 0, r31 # ivp is at least 32-bit aligned stvewx v24, r10, r31 stvewx v24, r11, r31 stvewx v24, r12, r31 mtspr 256, r7 # restore vrsave li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp Lcbc_abort: $POP r0, `$FRAME+$SIZE_T*2+$LRSAVE`($sp) $POP r30,`$FRAME+$SIZE_T*0`($sp) $POP r31,`$FRAME+$SIZE_T*1`($sp) mtlr r0 addi $sp,$sp,`$FRAME+$SIZE_T*2` blr .long 0 .byte 0,12,0x04,1,0x80,2,6,0 .long 0 .size .vpaes_cbc_encrypt,.-.vpaes_cbc_encrypt ___ } { my ($inp,$bits,$out)=map("r$_",(3..5)); my $dir="cr1"; my ($invlo,$invhi,$iptlo,$ipthi,$rcon) = map("v$_",(10..13,24)); $code.=<<___; ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## .align 4 _vpaes_key_preheat: mflr r8 bl Lconsts mtlr r8 li r11, 0xc0 # Lk_inv li r10, 0xd0 li r9, 0xe0 # L_ipt li r8, 0xf0 vspltisb v8,4 # 0x04..04 vxor v9,v9,v9 # 0x00..00 lvx $invlo, r12, r11 # Lk_inv li r11, 0x120 lvx $invhi, r12, r10 li r10, 0x130 lvx $iptlo, r12, r9 # Lk_ipt li r9, 0x220 lvx $ipthi, r12, r8 li r8, 0x230 lvx v14, r12, r11 # Lk_sb1 li r11, 0x240 lvx v15, r12, r10 li r10, 0x250 lvx v16, r12, r9 # Lk_dksd li r9, 0x260 lvx v17, r12, r8 li r8, 0x270 lvx v18, r12, r11 # Lk_dksb li r11, 0x280 lvx v19, r12, r10 li r10, 0x290 lvx v20, r12, r9 # Lk_dkse li r9, 0x2a0 lvx v21, r12, r8 li r8, 0x2b0 lvx v22, r12, r11 # Lk_dks9 lvx v23, r12, r10 lvx v24, r12, r9 # Lk_rcon lvx v25, 0, r12 # Lk_mc_forward[0] lvx v26, r12, r8 # Lks63 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .align 4 _vpaes_schedule_core: mflr r7 bl _vpaes_key_preheat # load the tables #lvx v0, 0, $inp # vmovdqu (%rdi), %xmm0 # load key (unaligned) neg r8, $inp # prepare for unaligned access lvx v0, 0, $inp addi $inp, $inp, 15 # 15 is not typo ?lvsr $inpperm, 0, r8 # -$inp lvx v6, 0, $inp # v6 serves as inptail addi $inp, $inp, 8 ?vperm v0, v0, v6, $inpperm # input transform vmr v3, v0 # vmovdqa %xmm0, %xmm3 bl _vpaes_schedule_transform vmr v7, v0 # vmovdqa %xmm0, %xmm7 bne $dir, Lschedule_am_decrypting # encrypting, output zeroth round key after transform li r8, 0x30 # mov \$0x30,%r8d li r9, 4 li r10, 8 li r11, 12 ?lvsr $outperm, 0, $out # prepare for unaligned access vnor $outmask, v9, v9 # 0xff..ff ?vperm $outmask, v9, $outmask, $outperm #stvx v0, 0, $out # vmovdqu %xmm0, (%rdx) vperm $outhead, v0, v0, $outperm # rotate right/left stvewx $outhead, 0, $out # some are superfluous stvewx $outhead, r9, $out stvewx $outhead, r10, $out addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10 stvewx $outhead, r11, $out b Lschedule_go Lschedule_am_decrypting: srwi r8, $bits, 1 # shr \$1,%r8d andi. r8, r8, 32 # and \$32,%r8d xori r8, r8, 32 # xor \$32,%r8d # nbits==192?0:32 addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10 # decrypting, output zeroth round key after shiftrows lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1 li r9, 4 li r10, 8 li r11, 12 vperm v4, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3 neg r0, $out # prepare for unaligned access ?lvsl $outperm, 0, r0 vnor $outmask, v9, v9 # 0xff..ff ?vperm $outmask, $outmask, v9, $outperm #stvx v4, 0, $out # vmovdqu %xmm3, (%rdx) vperm $outhead, v4, v4, $outperm # rotate right/left stvewx $outhead, 0, $out # some are superfluous stvewx $outhead, r9, $out stvewx $outhead, r10, $out addi r10, r12, 0x80 # lea .Lk_sr(%rip),%r10 stvewx $outhead, r11, $out addi $out, $out, 15 # 15 is not typo xori r8, r8, 0x30 # xor \$0x30, %r8 Lschedule_go: cmplwi $bits, 192 # cmp \$192, %esi bgt Lschedule_256 beq Lschedule_192 # 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## Lschedule_128: li r0, 10 # mov \$10, %esi mtctr r0 Loop_schedule_128: bl _vpaes_schedule_round bdz Lschedule_mangle_last # dec %esi bl _vpaes_schedule_mangle # write output b Loop_schedule_128 ## ## .aes_schedule_192 ## ## 192-bit specific part of key schedule. ## ## The main body of this schedule is the same as the 128-bit ## schedule, but with more smearing. The long, high side is ## stored in %xmm7 as before, and the short, low side is in ## the high bits of %xmm6. ## ## This schedule is somewhat nastier, however, because each ## round produces 192 bits of key material, or 1.5 round keys. ## Therefore, on each cycle we do 2 rounds and produce 3 round ## keys. ## .align 4 Lschedule_192: li r0, 4 # mov \$4, %esi lvx v0, 0, $inp ?vperm v0, v6, v0, $inpperm ?vsldoi v0, v3, v0, 8 # vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) bl _vpaes_schedule_transform # input transform ?vsldoi v6, v0, v9, 8 ?vsldoi v6, v9, v6, 8 # clobber "low" side with zeros mtctr r0 Loop_schedule_192: bl _vpaes_schedule_round ?vsldoi v0, v6, v0, 8 # vpalignr \$8,%xmm6,%xmm0,%xmm0 bl _vpaes_schedule_mangle # save key n bl _vpaes_schedule_192_smear bl _vpaes_schedule_mangle # save key n+1 bl _vpaes_schedule_round bdz Lschedule_mangle_last # dec %esi bl _vpaes_schedule_mangle # save key n+2 bl _vpaes_schedule_192_smear b Loop_schedule_192 ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## .align 4 Lschedule_256: li r0, 7 # mov \$7, %esi addi $inp, $inp, 8 lvx v0, 0, $inp # vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) ?vperm v0, v6, v0, $inpperm bl _vpaes_schedule_transform # input transform mtctr r0 Loop_schedule_256: bl _vpaes_schedule_mangle # output low result vmr v6, v0 # vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 # high round bl _vpaes_schedule_round bdz Lschedule_mangle_last # dec %esi bl _vpaes_schedule_mangle # low round. swap xmm7 and xmm6 ?vspltw v0, v0, 3 # vpshufd \$0xFF, %xmm0, %xmm0 vmr v5, v7 # vmovdqa %xmm7, %xmm5 vmr v7, v6 # vmovdqa %xmm6, %xmm7 bl _vpaes_schedule_low_round vmr v7, v5 # vmovdqa %xmm5, %xmm7 b Loop_schedule_256 ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## .align 4 Lschedule_mangle_last: # schedule last round key from xmm0 li r11, 0x2e0 # lea .Lk_deskew(%rip),%r11 li r9, 0x2f0 bne $dir, Lschedule_mangle_last_dec # encrypting lvx v1, r8, r10 # vmovdqa (%r8,%r10),%xmm1 li r11, 0x2c0 # lea .Lk_opt(%rip), %r11 # prepare to output transform li r9, 0x2d0 # prepare to output transform vperm v0, v0, v0, v1 # vpshufb %xmm1, %xmm0, %xmm0 # output permute lvx $iptlo, r11, r12 # reload $ipt lvx $ipthi, r9, r12 addi $out, $out, 16 # add \$16, %rdx vxor v0, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform # output transform #stvx v0, r0, $out # vmovdqu %xmm0, (%rdx) # save last key vperm v0, v0, v0, $outperm # rotate right/left li r10, 4 vsel v2, $outhead, v0, $outmask li r11, 8 stvx v2, 0, $out li r12, 12 stvewx v0, 0, $out # some (or all) are redundant stvewx v0, r10, $out stvewx v0, r11, $out stvewx v0, r12, $out b Lschedule_mangle_done .align 4 Lschedule_mangle_last_dec: lvx $iptlo, r11, r12 # reload $ipt lvx $ipthi, r9, r12 addi $out, $out, -16 # add \$-16, %rdx vxor v0, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform # output transform #stvx v0, r0, $out # vmovdqu %xmm0, (%rdx) # save last key addi r9, $out, -15 # -15 is not typo vperm v0, v0, v0, $outperm # rotate right/left li r10, 4 vsel v2, $outhead, v0, $outmask li r11, 8 stvx v2, 0, $out li r12, 12 stvewx v0, 0, r9 # some (or all) are redundant stvewx v0, r10, r9 stvewx v0, r11, r9 stvewx v0, r12, r9 Lschedule_mangle_done: mtlr r7 # cleanup vxor v0, v0, v0 # vpxor %xmm0, %xmm0, %xmm0 vxor v1, v1, v1 # vpxor %xmm1, %xmm1, %xmm1 vxor v2, v2, v2 # vpxor %xmm2, %xmm2, %xmm2 vxor v3, v3, v3 # vpxor %xmm3, %xmm3, %xmm3 vxor v4, v4, v4 # vpxor %xmm4, %xmm4, %xmm4 vxor v5, v5, v5 # vpxor %xmm5, %xmm5, %xmm5 vxor v6, v6, v6 # vpxor %xmm6, %xmm6, %xmm6 vxor v7, v7, v7 # vpxor %xmm7, %xmm7, %xmm7 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_192_smear ## ## Smear the short, low side in the 192-bit key schedule. ## ## Inputs: ## %xmm7: high side, b a x y ## %xmm6: low side, d c 0 0 ## %xmm13: 0 ## ## Outputs: ## %xmm6: b+c+d b+c 0 0 ## %xmm0: b+c+d b+c b a ## .align 4 _vpaes_schedule_192_smear: ?vspltw v0, v7, 3 ?vsldoi v1, v9, v6, 12 # vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 ?vsldoi v0, v7, v0, 8 # vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a vxor v6, v6, v1 # vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 vxor v6, v6, v0 # vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a vmr v0, v6 ?vsldoi v6, v6, v9, 8 ?vsldoi v6, v9, v6, 8 # clobber low side with zeros blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm4, %r11. ## .align 4 _vpaes_schedule_round: # extract rcon from xmm8 #vxor v4, v4, v4 # vpxor %xmm4, %xmm4, %xmm4 ?vsldoi v1, $rcon, v9, 15 # vpalignr \$15, %xmm8, %xmm4, %xmm1 ?vsldoi $rcon, $rcon, $rcon, 15 # vpalignr \$15, %xmm8, %xmm8, %xmm8 vxor v7, v7, v1 # vpxor %xmm1, %xmm7, %xmm7 # rotate ?vspltw v0, v0, 3 # vpshufd \$0xFF, %xmm0, %xmm0 ?vsldoi v0, v0, v0, 1 # vpalignr \$1, %xmm0, %xmm0, %xmm0 # fall through... # low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: # smear xmm7 ?vsldoi v1, v9, v7, 12 # vpslldq \$4, %xmm7, %xmm1 vxor v7, v7, v1 # vpxor %xmm1, %xmm7, %xmm7 vspltisb v1, 0x0f # 0x0f..0f ?vsldoi v4, v9, v7, 8 # vpslldq \$8, %xmm7, %xmm4 # subbytes vand v1, v1, v0 # vpand %xmm9, %xmm0, %xmm1 # 0 = k vsrb v0, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # 1 = i vxor v7, v7, v4 # vpxor %xmm4, %xmm7, %xmm7 vperm v2, $invhi, v9, v1 # vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vxor v1, v1, v0 # vpxor %xmm0, %xmm1, %xmm1 # 0 = j vperm v3, $invlo, v9, v0 # vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vperm v4, $invlo, v9, v1 # vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vxor v7, v7, v26 # vpxor .Lk_s63(%rip), %xmm7, %xmm7 vperm v3, $invlo, v9, v3 # vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak vxor v4, v4, v2 # vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vperm v2, $invlo, v9, v4 # vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak vxor v3, v3, v1 # vpxor %xmm1, %xmm3, %xmm3 # 2 = io vxor v2, v2, v0 # vpxor %xmm0, %xmm2, %xmm2 # 3 = jo vperm v4, v15, v9, v3 # vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou vperm v1, v14, v9, v2 # vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t vxor v1, v1, v4 # vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output # add in smeared stuff vxor v0, v1, v7 # vpxor %xmm7, %xmm1, %xmm0 vxor v7, v1, v7 # vmovdqa %xmm0, %xmm7 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%r11) ## ## Requires that %xmm9 = 0x0F0F... as in preheat ## Output in %xmm0 ## Clobbers %xmm2 ## .align 4 _vpaes_schedule_transform: #vand v1, v0, v9 # vpand %xmm9, %xmm0, %xmm1 vsrb v2, v0, v8 # vpsrlb \$4, %xmm0, %xmm0 # vmovdqa (%r11), %xmm2 # lo vperm v0, $iptlo, $iptlo, v0 # vpshufb %xmm1, %xmm2, %xmm2 # vmovdqa 16(%r11), %xmm1 # hi vperm v2, $ipthi, $ipthi, v2 # vpshufb %xmm0, %xmm1, %xmm0 vxor v0, v0, v2 # vpxor %xmm2, %xmm0, %xmm0 blr .long 0 .byte 0,12,0x14,0,0,0,0,0 ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%rdx), and increments or decrements it ## Keeps track of round number mod 4 in %r8 ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## .align 4 _vpaes_schedule_mangle: #vmr v4, v0 # vmovdqa %xmm0, %xmm4 # save xmm0 for later # vmovdqa .Lk_mc_forward(%rip),%xmm5 bne $dir, Lschedule_mangle_dec # encrypting vxor v4, v0, v26 # vpxor .Lk_s63(%rip), %xmm0, %xmm4 addi $out, $out, 16 # add \$16, %rdx vperm v4, v4, v4, v25 # vpshufb %xmm5, %xmm4, %xmm4 vperm v1, v4, v4, v25 # vpshufb %xmm5, %xmm4, %xmm1 vperm v3, v1, v1, v25 # vpshufb %xmm5, %xmm1, %xmm3 vxor v4, v4, v1 # vpxor %xmm1, %xmm4, %xmm4 lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1 vxor v3, v3, v4 # vpxor %xmm4, %xmm3, %xmm3 vperm v3, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3 addi r8, r8, -16 # add \$-16, %r8 andi. r8, r8, 0x30 # and \$0x30, %r8 #stvx v3, 0, $out # vmovdqu %xmm3, (%rdx) vperm v1, v3, v3, $outperm # rotate right/left vsel v2, $outhead, v1, $outmask vmr $outhead, v1 stvx v2, 0, $out blr .align 4 Lschedule_mangle_dec: # inverse mix columns # lea .Lk_dksd(%rip),%r11 vsrb v1, v0, v8 # vpsrlb \$4, %xmm4, %xmm1 # 1 = hi #and v4, v0, v9 # vpand %xmm9, %xmm4, %xmm4 # 4 = lo # vmovdqa 0x00(%r11), %xmm2 vperm v2, v16, v16, v0 # vpshufb %xmm4, %xmm2, %xmm2 # vmovdqa 0x10(%r11), %xmm3 vperm v3, v17, v17, v1 # vpshufb %xmm1, %xmm3, %xmm3 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3 # vmovdqa 0x20(%r11), %xmm2 vperm v2, v18, v18, v0 # vpshufb %xmm4, %xmm2, %xmm2 vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2 # vmovdqa 0x30(%r11), %xmm3 vperm v3, v19, v19, v1 # vpshufb %xmm1, %xmm3, %xmm3 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3 # vmovdqa 0x40(%r11), %xmm2 vperm v2, v20, v20, v0 # vpshufb %xmm4, %xmm2, %xmm2 vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2 # vmovdqa 0x50(%r11), %xmm3 vperm v3, v21, v21, v1 # vpshufb %xmm1, %xmm3, %xmm3 vxor v3, v3, v2 # vpxor %xmm2, %xmm3, %xmm3 # vmovdqa 0x60(%r11), %xmm2 vperm v2, v22, v22, v0 # vpshufb %xmm4, %xmm2, %xmm2 vperm v3, v3, v9, v25 # vpshufb %xmm5, %xmm3, %xmm3 # vmovdqa 0x70(%r11), %xmm4 vperm v4, v23, v23, v1 # vpshufb %xmm1, %xmm4, %xmm4 lvx v1, r8, r10 # vmovdqa (%r8,%r10), %xmm1 vxor v2, v2, v3 # vpxor %xmm3, %xmm2, %xmm2 vxor v3, v4, v2 # vpxor %xmm2, %xmm4, %xmm3 addi $out, $out, -16 # add \$-16, %rdx vperm v3, v3, v3, v1 # vpshufb %xmm1, %xmm3, %xmm3 addi r8, r8, -16 # add \$-16, %r8 andi. r8, r8, 0x30 # and \$0x30, %r8 #stvx v3, 0, $out # vmovdqu %xmm3, (%rdx) vperm v1, v3, v3, $outperm # rotate right/left vsel v2, $outhead, v1, $outmask vmr $outhead, v1 stvx v2, 0, $out blr .long 0 .byte 0,12,0x14,0,0,0,0,0 .globl .vpaes_set_encrypt_key .align 5 .vpaes_set_encrypt_key: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r0 mfspr r6, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r6,`$FRAME-4`($sp) # save vrsave li r7, -1 $PUSH r0, `$FRAME+$LRSAVE`($sp) mtspr 256, r7 # preserve all AltiVec registers srwi r9, $bits, 5 # shr \$5,%eax addi r9, r9, 6 # add \$5,%eax stw r9, 240($out) # mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; cmplw $dir, $bits, $bits # set encrypt direction li r8, 0x30 # mov \$0x30,%r8d bl _vpaes_schedule_core $POP r0, `$FRAME+$LRSAVE`($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtspr 256, r6 # restore vrsave mtlr r0 xor r3, r3, r3 lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_set_encrypt_key,.-.vpaes_set_encrypt_key .globl .vpaes_set_decrypt_key .align 4 .vpaes_set_decrypt_key: $STU $sp,-$FRAME($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mflr r0 mfspr r6, 256 # save vrsave stvx v20,r10,$sp addi r10,r10,32 stvx v21,r11,$sp addi r11,r11,32 stvx v22,r10,$sp addi r10,r10,32 stvx v23,r11,$sp addi r11,r11,32 stvx v24,r10,$sp addi r10,r10,32 stvx v25,r11,$sp addi r11,r11,32 stvx v26,r10,$sp addi r10,r10,32 stvx v27,r11,$sp addi r11,r11,32 stvx v28,r10,$sp addi r10,r10,32 stvx v29,r11,$sp addi r11,r11,32 stvx v30,r10,$sp stvx v31,r11,$sp stw r6,`$FRAME-4`($sp) # save vrsave li r7, -1 $PUSH r0, `$FRAME+$LRSAVE`($sp) mtspr 256, r7 # preserve all AltiVec registers srwi r9, $bits, 5 # shr \$5,%eax addi r9, r9, 6 # add \$5,%eax stw r9, 240($out) # mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; slwi r9, r9, 4 # shl \$4,%eax add $out, $out, r9 # lea (%rdx,%rax),%rdx cmplwi $dir, $bits, 0 # set decrypt direction srwi r8, $bits, 1 # shr \$1,%r8d andi. r8, r8, 32 # and \$32,%r8d xori r8, r8, 32 # xor \$32,%r8d # nbits==192?0:32 bl _vpaes_schedule_core $POP r0, `$FRAME+$LRSAVE`($sp) li r10,`15+6*$SIZE_T` li r11,`31+6*$SIZE_T` mtspr 256, r6 # restore vrsave mtlr r0 xor r3, r3, r3 lvx v20,r10,$sp addi r10,r10,32 lvx v21,r11,$sp addi r11,r11,32 lvx v22,r10,$sp addi r10,r10,32 lvx v23,r11,$sp addi r11,r11,32 lvx v24,r10,$sp addi r10,r10,32 lvx v25,r11,$sp addi r11,r11,32 lvx v26,r10,$sp addi r10,r10,32 lvx v27,r11,$sp addi r11,r11,32 lvx v28,r10,$sp addi r10,r10,32 lvx v29,r11,$sp addi r11,r11,32 lvx v30,r10,$sp lvx v31,r11,$sp addi $sp,$sp,$FRAME blr .long 0 .byte 0,12,0x04,1,0x80,0,3,0 .long 0 .size .vpaes_set_decrypt_key,.-.vpaes_set_decrypt_key ___ } my $consts=1; foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; # constants table endian-specific conversion if ($consts && m/\.long\s+(.+)\s+(\?[a-z]*)$/o) { my $conv=$2; my @bytes=(); # convert to endian-agnostic format foreach (split(/,\s+/,$1)) { my $l = /^0/?oct:int; push @bytes,($l>>24)&0xff,($l>>16)&0xff,($l>>8)&0xff,$l&0xff; } # little-endian conversion if ($flavour =~ /le$/o) { SWITCH: for($conv) { /\?inv/ && do { @bytes=map($_^0xf,@bytes); last; }; /\?rev/ && do { @bytes=reverse(@bytes); last; }; } } #emit print ".byte\t",join(',',map (sprintf("0x%02x",$_),@bytes)),"\n"; next; } $consts=0 if (m/Lconsts:/o); # end of table # instructions prefixed with '?' are endian-specific and need # to be adjusted accordingly... if ($flavour =~ /le$/o) { # little-endian s/\?lvsr/lvsl/o or s/\?lvsl/lvsr/o or s/\?(vperm\s+v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+,\s*)(v[0-9]+)/$1$3$2$4/o or s/\?(vsldoi\s+v[0-9]+,\s*)(v[0-9]+,)\s*(v[0-9]+,\s*)([0-9]+)/$1$3$2 16-$4/o or s/\?(vspltw\s+v[0-9]+,\s*)(v[0-9]+,)\s*([0-9])/$1$2 3-$3/o; } else { # big-endian s/\?([a-z]+)/$1/o; } print $_,"\n"; } close STDOUT;