/* * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/bn_int.h" #include "rsa_locl.h" /* * Part of the RSA keypair test. * Check the Chinese Remainder Theorem components are valid. * * See SP800-5bBr1 * 6.4.1.2.3: rsakpv1-crt Step 7 * 6.4.1.3.3: rsakpv2-crt Step 7 */ int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx) { int ret = 0; BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL; /* check if only some of the crt components are set */ if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) { if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL) return 0; return 1; /* return ok if all components are NULL */ } BN_CTX_start(ctx); r = BN_CTX_get(ctx); p1 = BN_CTX_get(ctx); q1 = BN_CTX_get(ctx); ret = (q1 != NULL) /* p1 = p -1 */ && (BN_copy(p1, rsa->p) != NULL) && BN_sub_word(p1, 1) /* q1 = q - 1 */ && (BN_copy(q1, rsa->q) != NULL) && BN_sub_word(q1, 1) /* (a) 1 < dP < (p – 1). */ && (BN_cmp(rsa->dmp1, BN_value_one()) > 0) && (BN_cmp(rsa->dmp1, p1) < 0) /* (b) 1 < dQ < (q - 1). */ && (BN_cmp(rsa->dmq1, BN_value_one()) > 0) && (BN_cmp(rsa->dmq1, q1) < 0) /* (c) 1 < qInv < p */ && (BN_cmp(rsa->iqmp, BN_value_one()) > 0) && (BN_cmp(rsa->iqmp, rsa->p) < 0) /* (d) 1 = (dP . e) mod (p - 1)*/ && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx) && BN_is_one(r) /* (e) 1 = (dQ . e) mod (q - 1) */ && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx) && BN_is_one(r) /* (f) 1 = (qInv . q) mod p */ && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx) && BN_is_one(r); BN_clear(p1); BN_clear(q1); BN_CTX_end(ctx); return ret; } /* * Part of the RSA keypair test. * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 * * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. * * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8 * 0.B504F334 gives an approximation to 11 decimal places. * The range is then from * 0xB504F334_0000.......................000 to * 0xFFFFFFFF_FFFF.......................FFF */ int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx) { int ret = 0; BIGNUM *tmp, *low; nbits >>= 1; /* Upper bound check */ if (BN_num_bits(p) != nbits) return 0; BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); low = BN_CTX_get(ctx); /* set low = (√2)(2^(nbits/2 - 1) */ if (low == NULL || !BN_set_word(tmp, 0xB504F334)) goto err; if (nbits >= 32) { if (!BN_lshift(low, tmp, nbits - 32)) goto err; } else if (!BN_rshift(low, tmp, 32 - nbits)) { goto err; } if (BN_cmp(p, low) < 0) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Part of the RSA keypair test. * Check the prime factor (for either p or q) * i.e: p is prime AND GCD(p - 1, e) = 1 * * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h). */ int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx) { int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits); int ret = 0; BIGNUM *p1 = NULL, *gcd = NULL; /* (Steps 5 a-b) prime test */ if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1 /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */ || rsa_check_prime_factor_range(p, nbits, ctx) != 1) return 0; BN_CTX_start(ctx); p1 = BN_CTX_get(ctx); gcd = BN_CTX_get(ctx); ret = (gcd != NULL) /* (Step 5d) GCD(p-1, e) = 1 */ && (BN_copy(p1, p) != NULL) && BN_sub_word(p1, 1) && BN_gcd(gcd, p1, e, ctx) && BN_is_one(gcd); BN_clear(p1); BN_CTX_end(ctx); return ret; } /* * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d * satisfies: * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) */ int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx) { int ret; BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd; /* (Step 6a) 2^(nbits/2) < d */ if (BN_num_bits(rsa->d) <= (nbits >> 1)) return 0; BN_CTX_start(ctx); r = BN_CTX_get(ctx); p1 = BN_CTX_get(ctx); q1 = BN_CTX_get(ctx); lcm = BN_CTX_get(ctx); p1q1 = BN_CTX_get(ctx); gcd = BN_CTX_get(ctx); ret = (gcd != NULL /* LCM(p - 1, q - 1) */ && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1) /* (Step 6a) d < LCM(p - 1, q - 1) */ && (BN_cmp(rsa->d, lcm) < 0) /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */ && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx) && BN_is_one(r)); BN_clear(p1); BN_clear(q1); BN_clear(lcm); BN_clear(gcd); BN_CTX_end(ctx); return ret; } /* Check exponent is odd, and has a bitlen ranging from [17..256] */ int rsa_check_public_exponent(const BIGNUM *e) { int bitlen = BN_num_bits(e); return (BN_is_odd(e) && bitlen > 16 && bitlen < 257); } /* * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) * i.e- numbits(p-q-1) > (nbits/2 -100) */ int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, int nbits) { int bitlen = (nbits >> 1) - 100; if (!BN_sub(diff, p, q)) return -1; BN_set_negative(diff, 0); if (BN_is_zero(diff)) return 0; if (!BN_sub_word(diff, 1)) return -1; return (BN_num_bits(diff) > bitlen); } /* return LCM(p-1, q-1) */ int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, BIGNUM *p1q1) { return BN_sub(p1, p, BN_value_one()) /* p-1 */ && BN_sub(q1, q, BN_value_one()) /* q-1 */ && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */ && BN_gcd(gcd, p1, q1, ctx) && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */ } /* * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA * caveat is that the modulus must be as specified in SP800-56Br1 */ int rsa_sp800_56b_check_public(const RSA *rsa) { int ret = 0, nbits, iterations, status; BN_CTX *ctx = NULL; BIGNUM *gcd = NULL; if (rsa->n == NULL || rsa->e == NULL) return 0; /* * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1) * NOTE: changed to allow keys >= 2048 */ nbits = BN_num_bits(rsa->n); if (!rsa_sp800_56b_validate_strength(nbits, -1)) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH); return 0; } if (!BN_is_odd(rsa->n)) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); return 0; } /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */ if (!rsa_check_public_exponent(rsa->e)) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); return 0; } ctx = BN_CTX_new(); gcd = BN_new(); if (ctx == NULL || gcd == NULL) goto err; iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits); /* (Steps d-f): * The modulus is composite, but not a power of a prime. * The modulus has no factors smaller than 752. */ if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); goto err; } ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status); if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS); ret = 0; goto err; } ret = 1; err: BN_free(gcd); BN_CTX_free(ctx); return ret; } /* * Perform validation of the RSA private key to check that 0 < D < N. */ int rsa_sp800_56b_check_private(const RSA *rsa) { if (rsa->d == NULL || rsa->n == NULL) return 0; return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0; } /* * RSA key pair validation. * * SP800-56Br1. * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" * * It uses: * 6.4.1.2.3 "rsakpv1 - crt" * 6.4.1.3.3 "rsakpv2 - crt" */ int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, int strength, int nbits) { int ret = 0; BN_CTX *ctx = NULL; BIGNUM *r = NULL; if (rsa->p == NULL || rsa->q == NULL || rsa->e == NULL || rsa->d == NULL || rsa->n == NULL) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); return 0; } /* (Step 1): Check Ranges */ if (!rsa_sp800_56b_validate_strength(nbits, strength)) return 0; /* If the exponent is known */ if (efixed != NULL) { /* (2): Check fixed exponent matches public exponent. */ if (BN_cmp(efixed, rsa->e) != 0) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); return 0; } } /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */ if (!rsa_check_public_exponent(rsa->e)) { /* exponent out of range */ RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); return 0; } /* (Step 3.b): check the modulus */ if (nbits != BN_num_bits(rsa->n)) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); return 0; } ctx = BN_CTX_new(); if (ctx == NULL) return 0; BN_CTX_start(ctx); r = BN_CTX_get(ctx); if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx)) goto err; /* (Step 4.c): Check n = pq */ if (BN_cmp(rsa->n, r) != 0) { RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST); goto err; } /* (Step 5): check prime factors p & q */ ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx) && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx) && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0) /* (Step 6): Check the private exponent d */ && rsa_check_private_exponent(rsa, nbits, ctx) /* 6.4.1.2.3 (Step 7): Check the CRT components */ && rsa_check_crt_components(rsa, ctx); if (ret != 1) RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR); err: BN_clear(r); BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; }