#! /usr/bin/env perl # Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the Apache License 2.0 (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # June 2011 # # This is AESNI-CBC+SHA1 "stitch" implementation. The idea, as spelled # in http://download.intel.com/design/intarch/papers/323686.pdf, is # that since AESNI-CBC encrypt exhibit *very* low instruction-level # parallelism, interleaving it with another algorithm would allow to # utilize processor resources better and achieve better performance. # SHA1 instruction sequences(*) are taken from sha1-x86_64.pl and # AESNI code is weaved into it. Below are performance numbers in # cycles per processed byte, less is better, for standalone AESNI-CBC # encrypt, sum of the latter and standalone SHA1, and "stitched" # subroutine: # # AES-128-CBC +SHA1 stitch gain # Westmere 3.77[+5.3] 9.07 6.55 +38% # Sandy Bridge 5.05[+5.0(6.1)] 10.06(11.15) 5.98(7.05) +68%(+58%) # Ivy Bridge 5.05[+4.6] 9.65 5.54 +74% # Haswell 4.43[+3.6(4.2)] 8.00(8.58) 4.55(5.21) +75%(+65%) # Skylake 2.63[+3.5(4.1)] 6.17(6.69) 4.23(4.44) +46%(+51%) # Bulldozer 5.77[+6.0] 11.72 6.37 +84% # Ryzen(**) 2.71[+1.93] 4.64 2.74 +69% # Goldmont(**) 3.82[+1.70] 5.52 4.20 +31% # # AES-192-CBC # Westmere 4.51 9.81 6.80 +44% # Sandy Bridge 6.05 11.06(12.15) 6.11(7.19) +81%(+69%) # Ivy Bridge 6.05 10.65 6.07 +75% # Haswell 5.29 8.86(9.44) 5.32(5.32) +67%(+77%) # Bulldozer 6.89 12.84 6.96 +84% # # AES-256-CBC # Westmere 5.25 10.55 7.21 +46% # Sandy Bridge 7.05 12.06(13.15) 7.12(7.72) +69%(+70%) # Ivy Bridge 7.05 11.65 7.12 +64% # Haswell 6.19 9.76(10.34) 6.21(6.25) +57%(+65%) # Skylake 3.62 7.16(7.68) 4.56(4.76) +57%(+61%) # Bulldozer 8.00 13.95 8.25 +69% # Ryzen(**) 3.71 5.64 3.72 +52% # Goldmont(**) 5.35 7.05 5.76 +22% # # (*) There are two code paths: SSSE3 and AVX. See sha1-568.pl for # background information. Above numbers in parentheses are SSSE3 # results collected on AVX-capable CPU, i.e. apply on OSes that # don't support AVX. # (**) SHAEXT results. # # Needless to mention that it makes no sense to implement "stitched" # *decrypt* subroutine. Because *both* AESNI-CBC decrypt and SHA1 # fully utilize parallelism, so stitching would not give any gain # anyway. Well, there might be some, e.g. because of better cache # locality... For reference, here are performance results for # standalone AESNI-CBC decrypt: # # AES-128-CBC AES-192-CBC AES-256-CBC # Westmere 1.25 1.50 1.75 # Sandy Bridge 0.74 0.91 1.09 # Ivy Bridge 0.74 0.90 1.11 # Haswell 0.63 0.76 0.88 # Bulldozer 0.70 0.85 0.99 # And indeed: # # AES-256-CBC +SHA1 stitch gain # Westmere 1.75 7.20 6.68 +7.8% # Sandy Bridge 1.09 6.09(7.22) 5.82(6.95) +4.6%(+3.9%) # Ivy Bridge 1.11 5.70 5.45 +4.6% # Haswell 0.88 4.45(5.00) 4.39(4.69) +1.4%(*)(+6.6%) # Bulldozer 0.99 6.95 5.95 +17%(**) # # (*) Tiny improvement coefficient on Haswell is because we compare # AVX1 stitch to sum with AVX2 SHA1. # (**) Execution is fully dominated by integer code sequence and # SIMD still hardly shows [in single-process benchmark;-] # $output is the last argument if it looks like a file (it has an extension) # $flavour is the first argument if it doesn't look like a file $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; $avx=1 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/ && $1>=2.19); $avx=1 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && $1>=2.09); $avx=1 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./ && $1>=10); $avx=1 if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/ && $2>=3.0); $shaext=1; ### set to zero if compiling for 1.0.1 $stitched_decrypt=0; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"" or die "can't call $xlate: $!"; *STDOUT=*OUT; # void aesni_cbc_sha1_enc(const void *inp, # void *out, # size_t length, # const AES_KEY *key, # unsigned char *iv, # SHA_CTX *ctx, # const void *in0); $code.=<<___; .text .extern OPENSSL_ia32cap_P .globl aesni_cbc_sha1_enc .type aesni_cbc_sha1_enc,\@abi-omnipotent .align 32 aesni_cbc_sha1_enc: .cfi_startproc # caller should check for SSSE3 and AES-NI bits mov OPENSSL_ia32cap_P+0(%rip),%r10d mov OPENSSL_ia32cap_P+4(%rip),%r11 ___ $code.=<<___ if ($shaext); bt \$61,%r11 # check SHA bit jc aesni_cbc_sha1_enc_shaext ___ $code.=<<___ if ($avx); and \$`1<<28`,%r11d # mask AVX bit and \$`1<<30`,%r10d # mask "Intel CPU" bit or %r11d,%r10d cmp \$`1<<28|1<<30`,%r10d je aesni_cbc_sha1_enc_avx ___ $code.=<<___; jmp aesni_cbc_sha1_enc_ssse3 ret .cfi_endproc .size aesni_cbc_sha1_enc,.-aesni_cbc_sha1_enc ___ my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); my $Xi=4; my @X=map("%xmm$_",(4..7,0..3)); my @Tx=map("%xmm$_",(8..10)); my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization my @T=("%esi","%edi"); my $j=0; my $jj=0; my $r=0; my $sn=0; my $rx=0; my $K_XX_XX="%r11"; my ($rndkey0,$iv,$in)=map("%xmm$_",(11..13)); # for enc my @rndkey=("%xmm14","%xmm15"); # for enc my ($inout0,$inout1,$inout2,$inout3)=map("%xmm$_",(12..15)); # for dec if (1) { # reassign for Atom Silvermont # The goal is to minimize amount of instructions with more than # 3 prefix bytes. Or in more practical terms to keep AES-NI *and* # SSSE3 instructions to upper half of the register bank. @X=map("%xmm$_",(8..11,4..7)); @Tx=map("%xmm$_",(12,13,3)); ($iv,$in,$rndkey0)=map("%xmm$_",(2,14,15)); @rndkey=("%xmm0","%xmm1"); } sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; my $arg = pop; $arg = "\$$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; } my $_rol=sub { &rol(@_) }; my $_ror=sub { &ror(@_) }; $code.=<<___; .type aesni_cbc_sha1_enc_ssse3,\@function,6 .align 32 aesni_cbc_sha1_enc_ssse3: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument #shr \$6,$len # debugging artefact #jz .Lepilogue_ssse3 # debugging artefact push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` #mov $in0,$inp # debugging artefact #lea 64(%rsp),$ctx # debugging artefact ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_ssse3: ___ $code.=<<___; mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization movdqu ($ivp),$iv # load IV mov $ivp,88(%rsp) # save $ivp ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments my $rounds="${ivp}d"; $code.=<<___; shl \$6,$len sub $in0,$out mov 240-112($key),$rounds add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] movdqa 64($K_XX_XX),@Tx[2] # pbswap mask movdqa 0($K_XX_XX),@Tx[1] # K_00_19 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] movdqu 16($inp),@X[-3&7] movdqu 32($inp),@X[-2&7] movdqu 48($inp),@X[-1&7] pshufb @Tx[2],@X[-4&7] # byte swap pshufb @Tx[2],@X[-3&7] pshufb @Tx[2],@X[-2&7] add \$64,$inp paddd @Tx[1],@X[-4&7] # add K_00_19 pshufb @Tx[2],@X[-1&7] paddd @Tx[1],@X[-3&7] paddd @Tx[1],@X[-2&7] movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU psubd @Tx[1],@X[-4&7] # restore X[] movdqa @X[-3&7],16(%rsp) psubd @Tx[1],@X[-3&7] movdqa @X[-2&7],32(%rsp) psubd @Tx[1],@X[-2&7] movups -112($key),$rndkey0 # $key[0] movups 16-112($key),$rndkey[0] # forward reference jmp .Loop_ssse3 ___ my $aesenc=sub { use integer; my ($n,$k)=($r/10,$r%10); if ($k==0) { $code.=<<___; movups `16*$n`($in0),$in # load input xorps $rndkey0,$in ___ $code.=<<___ if ($n); movups $iv,`16*($n-1)`($out,$in0) # write output ___ $code.=<<___; xorps $in,$iv movups `32+16*$k-112`($key),$rndkey[1] aesenc $rndkey[0],$iv ___ } elsif ($k==9) { $sn++; $code.=<<___; cmp \$11,$rounds jb .Laesenclast$sn movups `32+16*($k+0)-112`($key),$rndkey[1] aesenc $rndkey[0],$iv movups `32+16*($k+1)-112`($key),$rndkey[0] aesenc $rndkey[1],$iv je .Laesenclast$sn movups `32+16*($k+2)-112`($key),$rndkey[1] aesenc $rndkey[0],$iv movups `32+16*($k+3)-112`($key),$rndkey[0] aesenc $rndkey[1],$iv .Laesenclast$sn: aesenclast $rndkey[0],$iv movups 16-112($key),$rndkey[1] # forward reference ___ } else { $code.=<<___; movups `32+16*$k-112`($key),$rndkey[1] aesenc $rndkey[0],$iv ___ } $r++; unshift(@rndkey,pop(@rndkey)); }; sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # ror &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); eval(shift(@insns)); &movdqa (@Tx[0],@X[-1&7]); &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); &psrldq (@Tx[0],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); # ror &pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &movdqa (@Tx[2],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &movdqa (@Tx[0],@X[0]); eval(shift(@insns)); &pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword &paddd (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[0],31); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); &movdqa (@Tx[1],@Tx[2]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[2],30); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@Tx[0]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pslld (@Tx[1],2); &pxor (@X[0],@Tx[2]); eval(shift(@insns)); &movdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_XX eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 &pshufd (@Tx[1],@X[-1&7],0xee) if ($Xi==7); # was &movdqa (@Tx[0],@X[-1&7]) in Xupdate_ssse3_32_79 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] push(@Tx,shift(@Tx)); } sub Xupdate_ssse3_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)) if ($Xi==8); &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)) if ($Xi==8); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)) if (@insns[1] =~ /_ror/); eval(shift(@insns)) if (@insns[0] =~ /_ror/); &punpcklqdq(@Tx[0],@X[-1&7]); # compose "X[-6]", was &palignr(@Tx[0],@X[-2&7],8); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)); if ($Xi%5) { &movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX... } else { # ... or load next one &movdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)"); } eval(shift(@insns)); # ror &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)) if (@insns[0] =~ /_ror/); &movdqa (@Tx[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)); # body_20_39 &pslld (@X[0],2); eval(shift(@insns)); eval(shift(@insns)); &psrld (@Tx[0],30); eval(shift(@insns)) if (@insns[0] =~ /_rol/);# rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); eval(shift(@insns)); # body_20_39 eval(shift(@insns)) if (@insns[1] =~ /_rol/); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &pshufd(@Tx[1],@X[-1&7],0xee) if ($Xi<19); # was &movdqa (@Tx[1],@X[0]) eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] push(@Tx,shift(@Tx)); } sub Xuplast_ssse3_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@Tx[1],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &cmp ($inp,$len); &je (shift); unshift(@Tx,pop(@Tx)); &movdqa (@Tx[2],"64($K_XX_XX)"); # pbswap mask &movdqa (@Tx[1],"0($K_XX_XX)"); # K_00_19 &movdqu (@X[-4&7],"0($inp)"); # load input &movdqu (@X[-3&7],"16($inp)"); &movdqu (@X[-2&7],"32($inp)"); &movdqu (@X[-1&7],"48($inp)"); &pshufb (@X[-4&7],@Tx[2]); # byte swap &add ($inp,64); $Xi=0; } sub Xloop_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufb (@X[($Xi-3)&7],@Tx[2]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[($Xi-4)&7],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psubd (@X[($Xi-4)&7],@Tx[1]); foreach (@insns) { eval; } $Xi++; } sub Xtail_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } my @body_00_19 = ( '($a,$b,$c,$d,$e)=@V;'. '&$_ror ($b,$j?7:2);', # $b>>>2 '&xor (@T[0],$d);', '&mov (@T[1],$a);', # $b for next round '&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer '&xor ($b,$c);', # $c^$d for next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&and (@T[1],$b);', # ($b&($c^$d)) for next round '&xor ($b,$c);', # restore $b '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); sub body_00_19 () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39() if ($rx==19); $rx++; use integer; my ($k,$n); my @r=@body_00_19; $n = scalar(@r); $k = (($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds @r[$k%$n].='&$aesenc();' if ($jj==$k/$n); $jj++; return @r; } my @body_20_39 = ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer '&xor (@T[0],$d) if($j==19);'. '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c) '&mov (@T[1],$a);', # $b for next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round '&$_ror ($b,7);', # $b>>>2 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); sub body_20_39 () { # b^d^c # on entry @T[0]=b^d return &body_40_59() if ($rx==39); $rx++; use integer; my ($k,$n); my @r=@body_20_39; $n = scalar(@r); $k = (($jj+1)*8/20)*20*$n/8; # 8 aesencs per these 20 rounds @r[$k%$n].='&$aesenc();' if ($jj==$k/$n && $rx!=20); $jj++; return @r; } my @body_40_59 = ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d) '&xor ($c,$d) if ($j>=40);', # restore $c '&$_ror ($b,7);', # $b>>>2 '&mov (@T[1],$a);', # $b for next round '&xor (@T[0],$c);', '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j==59);'. '&xor (@T[1],$b) if ($j< 59);', # b^c for next round '&xor ($b,$c) if ($j< 59);', # c^d for next round '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); sub body_40_59 () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) $rx++; use integer; my ($k,$n); my @r=@body_40_59; $n = scalar(@r); $k=(($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds @r[$k%$n].='&$aesenc();' if ($jj==$k/$n && $rx!=40); $jj++; return @r; } $code.=<<___; .align 32 .Loop_ssse3: ___ &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_32_79(\&body_00_19); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_20_39); &Xuplast_ssse3_80(\&body_20_39,".Ldone_ssse3"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_r=$r; @saved_rndkey=@rndkey; &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); $code.=<<___; movups $iv,48($out,$in0) # write output lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_ssse3 .Ldone_ssse3: ___ $jj=$j=$saved_j; @V=@saved_V; $r=$saved_r; @rndkey=@saved_rndkey; &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); $code.=<<___; movups $iv,48($out,$in0) # write output mov 88(%rsp),$ivp # restore $ivp add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) movups $iv,($ivp) # write IV ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_def_cfa %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_def_cfa %rsp,8 .Lepilogue_ssse3: ret .cfi_endproc .size aesni_cbc_sha1_enc_ssse3,.-aesni_cbc_sha1_enc_ssse3 ___ if ($stitched_decrypt) {{{ # reset ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $j=$jj=$r=$rx=0; $Xi=4; # reassign for Atom Silvermont (see above) ($inout0,$inout1,$inout2,$inout3,$rndkey0)=map("%xmm$_",(0..4)); @X=map("%xmm$_",(8..13,6,7)); @Tx=map("%xmm$_",(14,15,5)); my @aes256_dec = ( '&movdqu($inout0,"0x00($in0)");', '&movdqu($inout1,"0x10($in0)"); &pxor ($inout0,$rndkey0);', '&movdqu($inout2,"0x20($in0)"); &pxor ($inout1,$rndkey0);', '&movdqu($inout3,"0x30($in0)"); &pxor ($inout2,$rndkey0);', '&pxor ($inout3,$rndkey0); &movups ($rndkey0,"16-112($key)");', '&movaps("64(%rsp)",@X[2]);', # save IV, originally @X[3] undef,undef ); for ($i=0;$i<13;$i++) { push (@aes256_dec,( '&aesdec ($inout0,$rndkey0);', '&aesdec ($inout1,$rndkey0);', '&aesdec ($inout2,$rndkey0);', '&aesdec ($inout3,$rndkey0); &movups($rndkey0,"'.(16*($i+2)-112).'($key)");' )); push (@aes256_dec,(undef,undef)) if (($i>=3 && $i<=5) || $i>=11); push (@aes256_dec,(undef,undef)) if ($i==5); } push(@aes256_dec,( '&aesdeclast ($inout0,$rndkey0); &movups (@X[0],"0x00($in0)");', '&aesdeclast ($inout1,$rndkey0); &movups (@X[1],"0x10($in0)");', '&aesdeclast ($inout2,$rndkey0); &movups (@X[2],"0x20($in0)");', '&aesdeclast ($inout3,$rndkey0); &movups (@X[3],"0x30($in0)");', '&xorps ($inout0,"64(%rsp)"); &movdqu ($rndkey0,"-112($key)");', '&xorps ($inout1,@X[0]); &movups ("0x00($out,$in0)",$inout0);', '&xorps ($inout2,@X[1]); &movups ("0x10($out,$in0)",$inout1);', '&xorps ($inout3,@X[2]); &movups ("0x20($out,$in0)",$inout2);', '&movups ("0x30($out,$in0)",$inout3);' )); sub body_00_19_dec () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39_dec() if ($rx==19); my @r=@body_00_19; unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]); $rx++; return @r; } sub body_20_39_dec () { # b^d^c # on entry @T[0]=b^d return &body_40_59_dec() if ($rx==39); my @r=@body_20_39; unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]); $rx++; return @r; } sub body_40_59_dec () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) my @r=@body_40_59; unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]); $rx++; return @r; } $code.=<<___; .globl aesni256_cbc_sha1_dec .type aesni256_cbc_sha1_dec,\@abi-omnipotent .align 32 aesni256_cbc_sha1_dec: .cfi_startproc # caller should check for SSSE3 and AES-NI bits mov OPENSSL_ia32cap_P+0(%rip),%r10d mov OPENSSL_ia32cap_P+4(%rip),%r11d ___ $code.=<<___ if ($avx); and \$`1<<28`,%r11d # mask AVX bit and \$`1<<30`,%r10d # mask "Intel CPU" bit or %r11d,%r10d cmp \$`1<<28|1<<30`,%r10d je aesni256_cbc_sha1_dec_avx ___ $code.=<<___; jmp aesni256_cbc_sha1_dec_ssse3 ret .cfi_endproc .size aesni256_cbc_sha1_dec,.-aesni256_cbc_sha1_dec .type aesni256_cbc_sha1_dec_ssse3,\@function,6 .align 32 aesni256_cbc_sha1_dec_ssse3: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_dec_ssse3: ___ $code.=<<___; mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization movdqu ($ivp),@X[3] # load IV #mov $ivp,88(%rsp) # save $ivp ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments $code.=<<___; shl \$6,$len sub $in0,$out add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] movdqa 64($K_XX_XX),@Tx[2] # pbswap mask movdqa 0($K_XX_XX),@Tx[1] # K_00_19 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] movdqu 16($inp),@X[-3&7] movdqu 32($inp),@X[-2&7] movdqu 48($inp),@X[-1&7] pshufb @Tx[2],@X[-4&7] # byte swap add \$64,$inp pshufb @Tx[2],@X[-3&7] pshufb @Tx[2],@X[-2&7] pshufb @Tx[2],@X[-1&7] paddd @Tx[1],@X[-4&7] # add K_00_19 paddd @Tx[1],@X[-3&7] paddd @Tx[1],@X[-2&7] movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU psubd @Tx[1],@X[-4&7] # restore X[] movdqa @X[-3&7],16(%rsp) psubd @Tx[1],@X[-3&7] movdqa @X[-2&7],32(%rsp) psubd @Tx[1],@X[-2&7] movdqu -112($key),$rndkey0 # $key[0] jmp .Loop_dec_ssse3 .align 32 .Loop_dec_ssse3: ___ &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_16_31(\&body_00_19_dec); &Xupdate_ssse3_32_79(\&body_00_19_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_40_59_dec); &Xupdate_ssse3_32_79(\&body_20_39_dec); &Xuplast_ssse3_80(\&body_20_39_dec,".Ldone_dec_ssse3"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_rx=$rx; &Xloop_ssse3(\&body_20_39_dec); &Xloop_ssse3(\&body_20_39_dec); &Xloop_ssse3(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_dec_ssse3 .Ldone_dec_ssse3: ___ $jj=$j=$saved_j; @V=@saved_V; $rx=$saved_rx; &Xtail_ssse3(\&body_20_39_dec); &Xtail_ssse3(\&body_20_39_dec); &Xtail_ssse3(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) movups @X[3],($ivp) # write IV ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_cfa_def %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_cfa_def %rsp,8 .Lepilogue_dec_ssse3: ret .cfi_endproc .size aesni256_cbc_sha1_dec_ssse3,.-aesni256_cbc_sha1_dec_ssse3 ___ }}} $j=$jj=$r=$rx=0; if ($avx) { my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); my $Xi=4; my @X=map("%xmm$_",(4..7,0..3)); my @Tx=map("%xmm$_",(8..10)); my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization my @T=("%esi","%edi"); my ($rndkey0,$iv,$in)=map("%xmm$_",(11..13)); my @rndkey=("%xmm14","%xmm15"); my ($inout0,$inout1,$inout2,$inout3)=map("%xmm$_",(12..15)); # for dec my $Kx=@Tx[2]; my $_rol=sub { &shld(@_[0],@_) }; my $_ror=sub { &shrd(@_[0],@_) }; $code.=<<___; .type aesni_cbc_sha1_enc_avx,\@function,6 .align 32 aesni_cbc_sha1_enc_avx: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument #shr \$6,$len # debugging artefact #jz .Lepilogue_avx # debugging artefact push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` #mov $in0,$inp # debugging artefact #lea 64(%rsp),$ctx # debugging artefact ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_avx: ___ $code.=<<___; vzeroall mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization vmovdqu ($ivp),$iv # load IV mov $ivp,88(%rsp) # save $ivp ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments my $rounds="${ivp}d"; $code.=<<___; shl \$6,$len sub $in0,$out mov 240-112($key),$rounds add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] vmovdqa 64($K_XX_XX),@X[2] # pbswap mask vmovdqa 0($K_XX_XX),$Kx # K_00_19 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] vmovdqu 16($inp),@X[-3&7] vmovdqu 32($inp),@X[-2&7] vmovdqu 48($inp),@X[-1&7] vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap add \$64,$inp vpshufb @X[2],@X[-3&7],@X[-3&7] vpshufb @X[2],@X[-2&7],@X[-2&7] vpshufb @X[2],@X[-1&7],@X[-1&7] vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19 vpaddd $Kx,@X[-3&7],@X[1] vpaddd $Kx,@X[-2&7],@X[2] vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU vmovdqa @X[1],16(%rsp) vmovdqa @X[2],32(%rsp) vmovups -112($key),$rndkey[1] # $key[0] vmovups 16-112($key),$rndkey[0] # forward reference jmp .Loop_avx ___ my $aesenc=sub { use integer; my ($n,$k)=($r/10,$r%10); if ($k==0) { $code.=<<___; vmovdqu `16*$n`($in0),$in # load input vpxor $rndkey[1],$in,$in ___ $code.=<<___ if ($n); vmovups $iv,`16*($n-1)`($out,$in0) # write output ___ $code.=<<___; vpxor $in,$iv,$iv vaesenc $rndkey[0],$iv,$iv vmovups `32+16*$k-112`($key),$rndkey[1] ___ } elsif ($k==9) { $sn++; $code.=<<___; cmp \$11,$rounds jb .Lvaesenclast$sn vaesenc $rndkey[0],$iv,$iv vmovups `32+16*($k+0)-112`($key),$rndkey[1] vaesenc $rndkey[1],$iv,$iv vmovups `32+16*($k+1)-112`($key),$rndkey[0] je .Lvaesenclast$sn vaesenc $rndkey[0],$iv,$iv vmovups `32+16*($k+2)-112`($key),$rndkey[1] vaesenc $rndkey[1],$iv,$iv vmovups `32+16*($k+3)-112`($key),$rndkey[0] .Lvaesenclast$sn: vaesenclast $rndkey[0],$iv,$iv vmovups -112($key),$rndkey[0] vmovups 16-112($key),$rndkey[1] # forward reference ___ } else { $code.=<<___; vaesenc $rndkey[0],$iv,$iv vmovups `32+16*$k-112`($key),$rndkey[1] ___ } $r++; unshift(@rndkey,pop(@rndkey)); }; sub Xupdate_avx_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[1],$Kx,@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@Tx[0],@X[0],31); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq(@Tx[1],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1 &vpsrld (@Tx[0],@Tx[1],30); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslld (@Tx[1],@Tx[1],2); &vpxor (@X[0],@X[0],@Tx[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 eval(shift(@insns)); eval(shift(@insns)); &vmovdqa ($Kx,eval(16*(($Xi)/5))."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_avx_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions my ($a,$b,$c,$d,$e); &vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]" &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/); &vpaddd (@Tx[1],$Kx,@X[-1&7]); &vmovdqa ($Kx,eval(16*($Xi/5))."($K_XX_XX)") if ($Xi%5==0); eval(shift(@insns)); # ror eval(shift(@insns)); &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpsrld (@Tx[0],@X[0],30); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpslld (@X[0],@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_avx_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); &vpaddd (@Tx[1],$Kx,@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &cmp ($inp,$len); &je (shift); &vmovdqa(@Tx[1],"64($K_XX_XX)"); # pbswap mask &vmovdqa($Kx,"0($K_XX_XX)"); # K_00_19 &vmovdqu(@X[-4&7],"0($inp)"); # load input &vmovdqu(@X[-3&7],"16($inp)"); &vmovdqu(@X[-2&7],"32($inp)"); &vmovdqu(@X[-1&7],"48($inp)"); &vpshufb(@X[-4&7],@X[-4&7],@Tx[1]); # byte swap &add ($inp,64); $Xi=0; } sub Xloop_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@Tx[1]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@Tx[0],@X[($Xi-4)&7],$Kx); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa(eval(16*$Xi)."(%rsp)",@Tx[0]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } $Xi++; } sub Xtail_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } $code.=<<___; .align 32 .Loop_avx: ___ &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_32_79(\&body_00_19); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_20_39); &Xuplast_avx_80(\&body_20_39,".Ldone_avx"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_r=$r; @saved_rndkey=@rndkey; &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); $code.=<<___; vmovups $iv,48($out,$in0) # write output lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_avx .Ldone_avx: ___ $jj=$j=$saved_j; @V=@saved_V; $r=$saved_r; @rndkey=@saved_rndkey; &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); $code.=<<___; vmovups $iv,48($out,$in0) # write output mov 88(%rsp),$ivp # restore $ivp add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) vmovups $iv,($ivp) # write IV vzeroall ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_def_cfa %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_def_cfa %rsp,8 .Lepilogue_avx: ret .cfi_endproc .size aesni_cbc_sha1_enc_avx,.-aesni_cbc_sha1_enc_avx ___ if ($stitched_decrypt) {{{ # reset ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $j=$jj=$r=$rx=0; $Xi=4; @aes256_dec = ( '&vpxor ($inout0,$rndkey0,"0x00($in0)");', '&vpxor ($inout1,$rndkey0,"0x10($in0)");', '&vpxor ($inout2,$rndkey0,"0x20($in0)");', '&vpxor ($inout3,$rndkey0,"0x30($in0)");', '&vmovups($rndkey0,"16-112($key)");', '&vmovups("64(%rsp)",@X[2]);', # save IV, originally @X[3] undef,undef ); for ($i=0;$i<13;$i++) { push (@aes256_dec,( '&vaesdec ($inout0,$inout0,$rndkey0);', '&vaesdec ($inout1,$inout1,$rndkey0);', '&vaesdec ($inout2,$inout2,$rndkey0);', '&vaesdec ($inout3,$inout3,$rndkey0); &vmovups($rndkey0,"'.(16*($i+2)-112).'($key)");' )); push (@aes256_dec,(undef,undef)) if (($i>=3 && $i<=5) || $i>=11); push (@aes256_dec,(undef,undef)) if ($i==5); } push(@aes256_dec,( '&vaesdeclast ($inout0,$inout0,$rndkey0); &vmovups(@X[0],"0x00($in0)");', '&vaesdeclast ($inout1,$inout1,$rndkey0); &vmovups(@X[1],"0x10($in0)");', '&vaesdeclast ($inout2,$inout2,$rndkey0); &vmovups(@X[2],"0x20($in0)");', '&vaesdeclast ($inout3,$inout3,$rndkey0); &vmovups(@X[3],"0x30($in0)");', '&vxorps ($inout0,$inout0,"64(%rsp)"); &vmovdqu($rndkey0,"-112($key)");', '&vxorps ($inout1,$inout1,@X[0]); &vmovups("0x00($out,$in0)",$inout0);', '&vxorps ($inout2,$inout2,@X[1]); &vmovups("0x10($out,$in0)",$inout1);', '&vxorps ($inout3,$inout3,@X[2]); &vmovups("0x20($out,$in0)",$inout2);', '&vmovups ("0x30($out,$in0)",$inout3);' )); $code.=<<___; .type aesni256_cbc_sha1_dec_avx,\@function,6 .align 32 aesni256_cbc_sha1_dec_avx: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 lea `-104-($win64?10*16:0)`(%rsp),%rsp .cfi_adjust_cfa_offset `104+($win64?10*16:0)` ___ $code.=<<___ if ($win64); movaps %xmm6,96+0(%rsp) movaps %xmm7,96+16(%rsp) movaps %xmm8,96+32(%rsp) movaps %xmm9,96+48(%rsp) movaps %xmm10,96+64(%rsp) movaps %xmm11,96+80(%rsp) movaps %xmm12,96+96(%rsp) movaps %xmm13,96+112(%rsp) movaps %xmm14,96+128(%rsp) movaps %xmm15,96+144(%rsp) .Lprologue_dec_avx: ___ $code.=<<___; vzeroall mov $in0,%r12 # reassign arguments mov $out,%r13 mov $len,%r14 lea 112($key),%r15 # size optimization vmovdqu ($ivp),@X[3] # load IV ___ ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments $code.=<<___; shl \$6,$len sub $in0,$out add $inp,$len # end of input lea K_XX_XX(%rip),$K_XX_XX mov 0($ctx),$A # load context mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov $B,@T[0] # magic seed mov 16($ctx),$E mov $C,@T[1] xor $D,@T[1] and @T[1],@T[0] vmovdqa 64($K_XX_XX),@X[2] # pbswap mask vmovdqa 0($K_XX_XX),$Kx # K_00_19 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3] vmovdqu 16($inp),@X[-3&7] vmovdqu 32($inp),@X[-2&7] vmovdqu 48($inp),@X[-1&7] vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap add \$64,$inp vpshufb @X[2],@X[-3&7],@X[-3&7] vpshufb @X[2],@X[-2&7],@X[-2&7] vpshufb @X[2],@X[-1&7],@X[-1&7] vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19 vpaddd $Kx,@X[-3&7],@X[1] vpaddd $Kx,@X[-2&7],@X[2] vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU vmovdqa @X[1],16(%rsp) vmovdqa @X[2],32(%rsp) vmovups -112($key),$rndkey0 # $key[0] jmp .Loop_dec_avx .align 32 .Loop_dec_avx: ___ &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_16_31(\&body_00_19_dec); &Xupdate_avx_32_79(\&body_00_19_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_40_59_dec); &Xupdate_avx_32_79(\&body_20_39_dec); &Xuplast_avx_80(\&body_20_39_dec,".Ldone_dec_avx"); # can jump to "done" $saved_j=$j; @saved_V=@V; $saved_rx=$rx; &Xloop_avx(\&body_20_39_dec); &Xloop_avx(\&body_20_39_dec); &Xloop_avx(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; lea 64($in0),$in0 add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C add 12($ctx),$D mov $A,0($ctx) add 16($ctx),$E mov @T[0],4($ctx) mov @T[0],$B # magic seed mov $C,8($ctx) mov $C,@T[1] mov $D,12($ctx) xor $D,@T[1] mov $E,16($ctx) and @T[1],@T[0] jmp .Loop_dec_avx .Ldone_dec_avx: ___ $jj=$j=$saved_j; @V=@saved_V; $rx=$saved_rx; &Xtail_avx(\&body_20_39_dec); &Xtail_avx(\&body_20_39_dec); &Xtail_avx(\&body_20_39_dec); eval(@aes256_dec[-1]); # last store $code.=<<___; add 0($ctx),$A # update context add 4($ctx),@T[0] add 8($ctx),$C mov $A,0($ctx) add 12($ctx),$D mov @T[0],4($ctx) add 16($ctx),$E mov $C,8($ctx) mov $D,12($ctx) mov $E,16($ctx) vmovups @X[3],($ivp) # write IV vzeroall ___ $code.=<<___ if ($win64); movaps 96+0(%rsp),%xmm6 movaps 96+16(%rsp),%xmm7 movaps 96+32(%rsp),%xmm8 movaps 96+48(%rsp),%xmm9 movaps 96+64(%rsp),%xmm10 movaps 96+80(%rsp),%xmm11 movaps 96+96(%rsp),%xmm12 movaps 96+112(%rsp),%xmm13 movaps 96+128(%rsp),%xmm14 movaps 96+144(%rsp),%xmm15 ___ $code.=<<___; lea `104+($win64?10*16:0)`(%rsp),%rsi .cfi_def_cfa %rsi,56 mov 0(%rsi),%r15 .cfi_restore %r15 mov 8(%rsi),%r14 .cfi_restore %r14 mov 16(%rsi),%r13 .cfi_restore %r13 mov 24(%rsi),%r12 .cfi_restore %r12 mov 32(%rsi),%rbp .cfi_restore %rbp mov 40(%rsi),%rbx .cfi_restore %rbx lea 48(%rsi),%rsp .cfi_def_cfa %rsp,8 .Lepilogue_dec_avx: ret .cfi_endproc .size aesni256_cbc_sha1_dec_avx,.-aesni256_cbc_sha1_dec_avx ___ }}} } $code.=<<___; .section .rodata align=64 .align 64 K_XX_XX: .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask .byte 0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0 .asciz "AESNI-CBC+SHA1 stitch for x86_64, CRYPTOGAMS by " .align 64 .previous ___ if ($shaext) {{{ ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10"); $rounds="%r11d"; ($iv,$in,$rndkey0)=map("%xmm$_",(2,14,15)); @rndkey=("%xmm0","%xmm1"); $r=0; my ($BSWAP,$ABCD,$E,$E_,$ABCD_SAVE,$E_SAVE)=map("%xmm$_",(7..12)); my @MSG=map("%xmm$_",(3..6)); $code.=<<___; .type aesni_cbc_sha1_enc_shaext,\@function,6 .align 32 aesni_cbc_sha1_enc_shaext: .cfi_startproc mov `($win64?56:8)`(%rsp),$inp # load 7th argument ___ $code.=<<___ if ($win64); lea `-8-10*16`(%rsp),%rsp movaps %xmm6,-8-10*16(%rax) movaps %xmm7,-8-9*16(%rax) movaps %xmm8,-8-8*16(%rax) movaps %xmm9,-8-7*16(%rax) movaps %xmm10,-8-6*16(%rax) movaps %xmm11,-8-5*16(%rax) movaps %xmm12,-8-4*16(%rax) movaps %xmm13,-8-3*16(%rax) movaps %xmm14,-8-2*16(%rax) movaps %xmm15,-8-1*16(%rax) .Lprologue_shaext: ___ $code.=<<___; movdqu ($ctx),$ABCD movd 16($ctx),$E movdqa K_XX_XX+0x50(%rip),$BSWAP # byte-n-word swap mov 240($key),$rounds sub $in0,$out movups ($key),$rndkey0 # $key[0] movups ($ivp),$iv # load IV movups 16($key),$rndkey[0] # forward reference lea 112($key),$key # size optimization pshufd \$0b00011011,$ABCD,$ABCD # flip word order pshufd \$0b00011011,$E,$E # flip word order jmp .Loop_shaext .align 16 .Loop_shaext: ___ &$aesenc(); $code.=<<___; movdqu ($inp),@MSG[0] movdqa $E,$E_SAVE # offload $E pshufb $BSWAP,@MSG[0] movdqu 0x10($inp),@MSG[1] movdqa $ABCD,$ABCD_SAVE # offload $ABCD ___ &$aesenc(); $code.=<<___; pshufb $BSWAP,@MSG[1] paddd @MSG[0],$E movdqu 0x20($inp),@MSG[2] lea 0x40($inp),$inp pxor $E_SAVE,@MSG[0] # black magic ___ &$aesenc(); $code.=<<___; pxor $E_SAVE,@MSG[0] # black magic movdqa $ABCD,$E_ pshufb $BSWAP,@MSG[2] sha1rnds4 \$0,$E,$ABCD # 0-3 sha1nexte @MSG[1],$E_ ___ &$aesenc(); $code.=<<___; sha1msg1 @MSG[1],@MSG[0] movdqu -0x10($inp),@MSG[3] movdqa $ABCD,$E pshufb $BSWAP,@MSG[3] ___ &$aesenc(); $code.=<<___; sha1rnds4 \$0,$E_,$ABCD # 4-7 sha1nexte @MSG[2],$E pxor @MSG[2],@MSG[0] sha1msg1 @MSG[2],@MSG[1] ___ &$aesenc(); for($i=2;$i<20-4;$i++) { $code.=<<___; movdqa $ABCD,$E_ sha1rnds4 \$`int($i/5)`,$E,$ABCD # 8-11 sha1nexte @MSG[3],$E_ ___ &$aesenc(); $code.=<<___; sha1msg2 @MSG[3],@MSG[0] pxor @MSG[3],@MSG[1] sha1msg1 @MSG[3],@MSG[2] ___ ($E,$E_)=($E_,$E); push(@MSG,shift(@MSG)); &$aesenc(); } $code.=<<___; movdqa $ABCD,$E_ sha1rnds4 \$3,$E,$ABCD # 64-67 sha1nexte @MSG[3],$E_ sha1msg2 @MSG[3],@MSG[0] pxor @MSG[3],@MSG[1] ___ &$aesenc(); $code.=<<___; movdqa $ABCD,$E sha1rnds4 \$3,$E_,$ABCD # 68-71 sha1nexte @MSG[0],$E sha1msg2 @MSG[0],@MSG[1] ___ &$aesenc(); $code.=<<___; movdqa $E_SAVE,@MSG[0] movdqa $ABCD,$E_ sha1rnds4 \$3,$E,$ABCD # 72-75 sha1nexte @MSG[1],$E_ ___ &$aesenc(); $code.=<<___; movdqa $ABCD,$E sha1rnds4 \$3,$E_,$ABCD # 76-79 sha1nexte $MSG[0],$E ___ while($r<40) { &$aesenc(); } # remaining aesenc's $code.=<<___; dec $len paddd $ABCD_SAVE,$ABCD movups $iv,48($out,$in0) # write output lea 64($in0),$in0 jnz .Loop_shaext pshufd \$0b00011011,$ABCD,$ABCD pshufd \$0b00011011,$E,$E movups $iv,($ivp) # write IV movdqu $ABCD,($ctx) movd $E,16($ctx) ___ $code.=<<___ if ($win64); movaps -8-10*16(%rax),%xmm6 movaps -8-9*16(%rax),%xmm7 movaps -8-8*16(%rax),%xmm8 movaps -8-7*16(%rax),%xmm9 movaps -8-6*16(%rax),%xmm10 movaps -8-5*16(%rax),%xmm11 movaps -8-4*16(%rax),%xmm12 movaps -8-3*16(%rax),%xmm13 movaps -8-2*16(%rax),%xmm14 movaps -8-1*16(%rax),%xmm15 mov %rax,%rsp .Lepilogue_shaext: ___ $code.=<<___; ret .cfi_endproc .size aesni_cbc_sha1_enc_shaext,.-aesni_cbc_sha1_enc_shaext ___ }}} # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type ssse3_handler,\@abi-omnipotent .align 16 ssse3_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail ___ $code.=<<___ if ($shaext); lea aesni_cbc_sha1_enc_shaext(%rip),%r10 cmp %r10,%rbx jb .Lseh_no_shaext lea (%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq lea 168(%rax),%rax # adjust stack pointer jmp .Lcommon_seh_tail .Lseh_no_shaext: ___ $code.=<<___; lea 96(%rax),%rsi lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx .long 0xa548f3fc # cld; rep movsq lea `104+10*16`(%rax),%rax # adjust stack pointer mov 0(%rax),%r15 mov 8(%rax),%r14 mov 16(%rax),%r13 mov 24(%rax),%r12 mov 32(%rax),%rbp mov 40(%rax),%rbx lea 48(%rax),%rax mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size ssse3_handler,.-ssse3_handler .section .pdata .align 4 .rva .LSEH_begin_aesni_cbc_sha1_enc_ssse3 .rva .LSEH_end_aesni_cbc_sha1_enc_ssse3 .rva .LSEH_info_aesni_cbc_sha1_enc_ssse3 ___ $code.=<<___ if ($avx); .rva .LSEH_begin_aesni_cbc_sha1_enc_avx .rva .LSEH_end_aesni_cbc_sha1_enc_avx .rva .LSEH_info_aesni_cbc_sha1_enc_avx ___ $code.=<<___ if ($shaext); .rva .LSEH_begin_aesni_cbc_sha1_enc_shaext .rva .LSEH_end_aesni_cbc_sha1_enc_shaext .rva .LSEH_info_aesni_cbc_sha1_enc_shaext ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_aesni_cbc_sha1_enc_ssse3: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[] ___ $code.=<<___ if ($avx); .LSEH_info_aesni_cbc_sha1_enc_avx: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[] ___ $code.=<<___ if ($shaext); .LSEH_info_aesni_cbc_sha1_enc_shaext: .byte 9,0,0,0 .rva ssse3_handler .rva .Lprologue_shaext,.Lepilogue_shaext # HandlerData[] ___ } #################################################################### sub rex { local *opcode=shift; my ($dst,$src)=@_; my $rex=0; $rex|=0x04 if($dst>=8); $rex|=0x01 if($src>=8); unshift @opcode,$rex|0x40 if($rex); } sub sha1rnds4 { if (@_[0] =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x3a,0xcc); rex(\@opcode,$3,$2); push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M my $c=$1; push @opcode,$c=~/^0/?oct($c):$c; return ".byte\t".join(',',@opcode); } else { return "sha1rnds4\t".@_[0]; } } sub sha1op38 { my $instr = shift; my %opcodelet = ( "sha1nexte" => 0xc8, "sha1msg1" => 0xc9, "sha1msg2" => 0xca ); if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) { my @opcode=(0x0f,0x38); rex(\@opcode,$2,$1); push @opcode,$opcodelet{$instr}; push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M return ".byte\t".join(',',@opcode); } else { return $instr."\t".@_[0]; } } sub aesni { my $line=shift; my @opcode=(0x0f,0x38); if ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) { my %opcodelet = ( "aesenc" => 0xdc, "aesenclast" => 0xdd, "aesdec" => 0xde, "aesdeclast" => 0xdf ); return undef if (!defined($opcodelet{$1})); rex(\@opcode,$3,$2); push @opcode,$opcodelet{$1},0xc0|($2&7)|(($3&7)<<3); # ModR/M unshift @opcode,0x66; return ".byte\t".join(',',@opcode); } return $line; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\b(sha1rnds4)\s+(.*)/sha1rnds4($2)/geo or s/\b(sha1[^\s]*)\s+(.*)/sha1op38($1,$2)/geo or s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!";