/* * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2004, EdelKey Project. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Christophe Renou and Peter Sylvester, * for the EdelKey project. */ #ifndef OPENSSL_NO_SRP # include "internal/cryptlib.h" # include "internal/evp_int.h" # include # include # include # include # include # include # include # define SRP_RANDOM_SALT_LEN 20 # define MAX_LEN 2500 /* * Note that SRP uses its own variant of base 64 encoding. A different base64 * alphabet is used and no padding '=' characters are added. Instead we pad to * the front with 0 bytes and subsequently strip off leading encoded padding. * This variant is used for compatibility with other SRP implementations - * notably libsrp, but also others. It is also required for backwards * compatibility in order to load verifier files from other OpenSSL versions. */ /* * Convert a base64 string into raw byte array representation. * Returns the length of the decoded data, or -1 on error. */ static int t_fromb64(unsigned char *a, size_t alen, const char *src) { EVP_ENCODE_CTX *ctx; int outl = 0, outl2 = 0; size_t size, padsize; const unsigned char *pad = (const unsigned char *)"00"; while (*src == ' ' || *src == '\t' || *src == '\n') ++src; size = strlen(src); padsize = 4 - (size & 3); padsize &= 3; /* Four bytes in src become three bytes output. */ if (size > INT_MAX || ((size + padsize) / 4) * 3 > alen) return -1; ctx = EVP_ENCODE_CTX_new(); if (ctx == NULL) return -1; /* * This should never occur because 1 byte of data always requires 2 bytes of * encoding, i.e. * 0 bytes unencoded = 0 bytes encoded * 1 byte unencoded = 2 bytes encoded * 2 bytes unencoded = 3 bytes encoded * 3 bytes unencoded = 4 bytes encoded * 4 bytes unencoded = 6 bytes encoded * etc */ if (padsize == 3) { outl = -1; goto err; } /* Valid padsize values are now 0, 1 or 2 */ EVP_DecodeInit(ctx); evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_USE_SRP_ALPHABET); /* Add any encoded padding that is required */ if (padsize != 0 && EVP_DecodeUpdate(ctx, a, &outl, pad, padsize) < 0) { outl = -1; goto err; } if (EVP_DecodeUpdate(ctx, a, &outl2, (const unsigned char *)src, size) < 0) { outl = -1; goto err; } outl += outl2; EVP_DecodeFinal(ctx, a + outl, &outl2); outl += outl2; /* Strip off the leading padding */ if (padsize != 0) { if ((int)padsize >= outl) { outl = -1; goto err; } /* * If we added 1 byte of padding prior to encoding then we have 2 bytes * of "real" data which gets spread across 4 encoded bytes like this: * (6 bits pad)(2 bits pad | 4 bits data)(6 bits data)(6 bits data) * So 1 byte of pre-encoding padding results in 1 full byte of encoded * padding. * If we added 2 bytes of padding prior to encoding this gets encoded * as: * (6 bits pad)(6 bits pad)(4 bits pad | 2 bits data)(6 bits data) * So 2 bytes of pre-encoding padding results in 2 full bytes of encoded * padding, i.e. we have to strip the same number of bytes of padding * from the encoded data as we added to the pre-encoded data. */ memmove(a, a + padsize, outl - padsize); outl -= padsize; } err: EVP_ENCODE_CTX_free(ctx); return outl; } /* * Convert a raw byte string into a null-terminated base64 ASCII string. * Returns 1 on success or 0 on error. */ static int t_tob64(char *dst, const unsigned char *src, int size) { EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int outl = 0, outl2 = 0; unsigned char pad[2] = {0, 0}; size_t leadz = 0; if (ctx == NULL) return 0; EVP_EncodeInit(ctx); evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_NO_NEWLINES | EVP_ENCODE_CTX_USE_SRP_ALPHABET); /* * We pad at the front with zero bytes until the length is a multiple of 3 * so that EVP_EncodeUpdate/EVP_EncodeFinal does not add any of its own "=" * padding */ leadz = 3 - (size % 3); if (leadz != 3 && !EVP_EncodeUpdate(ctx, (unsigned char *)dst, &outl, pad, leadz)) { EVP_ENCODE_CTX_free(ctx); return 0; } if (!EVP_EncodeUpdate(ctx, (unsigned char *)dst + outl, &outl2, src, size)) { EVP_ENCODE_CTX_free(ctx); return 0; } outl += outl2; EVP_EncodeFinal(ctx, (unsigned char *)dst + outl, &outl2); outl += outl2; /* Strip the encoded padding at the front */ if (leadz != 3) { memmove(dst, dst + leadz, outl - leadz); dst[outl - leadz] = '\0'; } EVP_ENCODE_CTX_free(ctx); return 1; } void SRP_user_pwd_free(SRP_user_pwd *user_pwd) { if (user_pwd == NULL) return; BN_free(user_pwd->s); BN_clear_free(user_pwd->v); OPENSSL_free(user_pwd->id); OPENSSL_free(user_pwd->info); OPENSSL_free(user_pwd); } SRP_user_pwd *SRP_user_pwd_new(void) { SRP_user_pwd *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { /* SRPerr(SRP_F_SRP_USER_PWD_NEW, ERR_R_MALLOC_FAILURE); */ /*ckerr_ignore*/ return NULL; } ret->N = NULL; ret->g = NULL; ret->s = NULL; ret->v = NULL; ret->id = NULL; ret->info = NULL; return ret; } void SRP_user_pwd_set_gN(SRP_user_pwd *vinfo, const BIGNUM *g, const BIGNUM *N) { vinfo->N = N; vinfo->g = g; } int SRP_user_pwd_set1_ids(SRP_user_pwd *vinfo, const char *id, const char *info) { OPENSSL_free(vinfo->id); OPENSSL_free(vinfo->info); if (id != NULL && NULL == (vinfo->id = OPENSSL_strdup(id))) return 0; return (info == NULL || NULL != (vinfo->info = OPENSSL_strdup(info))); } static int SRP_user_pwd_set_sv(SRP_user_pwd *vinfo, const char *s, const char *v) { unsigned char tmp[MAX_LEN]; int len; vinfo->v = NULL; vinfo->s = NULL; len = t_fromb64(tmp, sizeof(tmp), v); if (len < 0) return 0; if (NULL == (vinfo->v = BN_bin2bn(tmp, len, NULL))) return 0; len = t_fromb64(tmp, sizeof(tmp), s); if (len < 0) goto err; vinfo->s = BN_bin2bn(tmp, len, NULL); if (vinfo->s == NULL) goto err; return 1; err: BN_free(vinfo->v); vinfo->v = NULL; return 0; } int SRP_user_pwd_set0_sv(SRP_user_pwd *vinfo, BIGNUM *s, BIGNUM *v) { BN_free(vinfo->s); BN_clear_free(vinfo->v); vinfo->v = v; vinfo->s = s; return (vinfo->s != NULL && vinfo->v != NULL); } static SRP_user_pwd *srp_user_pwd_dup(SRP_user_pwd *src) { SRP_user_pwd *ret; if (src == NULL) return NULL; if ((ret = SRP_user_pwd_new()) == NULL) return NULL; SRP_user_pwd_set_gN(ret, src->g, src->N); if (!SRP_user_pwd_set1_ids(ret, src->id, src->info) || !SRP_user_pwd_set0_sv(ret, BN_dup(src->s), BN_dup(src->v))) { SRP_user_pwd_free(ret); return NULL; } return ret; } SRP_VBASE *SRP_VBASE_new(char *seed_key) { SRP_VBASE *vb = OPENSSL_malloc(sizeof(*vb)); if (vb == NULL) return NULL; if ((vb->users_pwd = sk_SRP_user_pwd_new_null()) == NULL || (vb->gN_cache = sk_SRP_gN_cache_new_null()) == NULL) { OPENSSL_free(vb); return NULL; } vb->default_g = NULL; vb->default_N = NULL; vb->seed_key = NULL; if ((seed_key != NULL) && (vb->seed_key = OPENSSL_strdup(seed_key)) == NULL) { sk_SRP_user_pwd_free(vb->users_pwd); sk_SRP_gN_cache_free(vb->gN_cache); OPENSSL_free(vb); return NULL; } return vb; } void SRP_VBASE_free(SRP_VBASE *vb) { if (!vb) return; sk_SRP_user_pwd_pop_free(vb->users_pwd, SRP_user_pwd_free); sk_SRP_gN_cache_free(vb->gN_cache); OPENSSL_free(vb->seed_key); OPENSSL_free(vb); } static SRP_gN_cache *SRP_gN_new_init(const char *ch) { unsigned char tmp[MAX_LEN]; int len; SRP_gN_cache *newgN = OPENSSL_malloc(sizeof(*newgN)); if (newgN == NULL) return NULL; len = t_fromb64(tmp, sizeof(tmp), ch); if (len < 0) goto err; if ((newgN->b64_bn = OPENSSL_strdup(ch)) == NULL) goto err; if ((newgN->bn = BN_bin2bn(tmp, len, NULL))) return newgN; OPENSSL_free(newgN->b64_bn); err: OPENSSL_free(newgN); return NULL; } static void SRP_gN_free(SRP_gN_cache *gN_cache) { if (gN_cache == NULL) return; OPENSSL_free(gN_cache->b64_bn); BN_free(gN_cache->bn); OPENSSL_free(gN_cache); } static SRP_gN *SRP_get_gN_by_id(const char *id, STACK_OF(SRP_gN) *gN_tab) { int i; SRP_gN *gN; if (gN_tab != NULL) { for (i = 0; i < sk_SRP_gN_num(gN_tab); i++) { gN = sk_SRP_gN_value(gN_tab, i); if (gN && (id == NULL || strcmp(gN->id, id) == 0)) return gN; } } return SRP_get_default_gN(id); } static BIGNUM *SRP_gN_place_bn(STACK_OF(SRP_gN_cache) *gN_cache, char *ch) { int i; if (gN_cache == NULL) return NULL; /* search if we have already one... */ for (i = 0; i < sk_SRP_gN_cache_num(gN_cache); i++) { SRP_gN_cache *cache = sk_SRP_gN_cache_value(gN_cache, i); if (strcmp(cache->b64_bn, ch) == 0) return cache->bn; } { /* it is the first time that we find it */ SRP_gN_cache *newgN = SRP_gN_new_init(ch); if (newgN) { if (sk_SRP_gN_cache_insert(gN_cache, newgN, 0) > 0) return newgN->bn; SRP_gN_free(newgN); } } return NULL; } /* * This function parses the verifier file generated by the srp app. * The format for each entry is: * V base64(verifier) base64(salt) username gNid userinfo(optional) * or * I base64(N) base64(g) * Note that base64 is the SRP variant of base64 encoding described * in t_fromb64(). */ int SRP_VBASE_init(SRP_VBASE *vb, char *verifier_file) { int error_code; STACK_OF(SRP_gN) *SRP_gN_tab = sk_SRP_gN_new_null(); char *last_index = NULL; int i; char **pp; SRP_gN *gN = NULL; SRP_user_pwd *user_pwd = NULL; TXT_DB *tmpdb = NULL; BIO *in = BIO_new(BIO_s_file()); error_code = SRP_ERR_OPEN_FILE; if (in == NULL || BIO_read_filename(in, verifier_file) <= 0) goto err; error_code = SRP_ERR_VBASE_INCOMPLETE_FILE; if ((tmpdb = TXT_DB_read(in, DB_NUMBER)) == NULL) goto err; error_code = SRP_ERR_MEMORY; if (vb->seed_key) { last_index = SRP_get_default_gN(NULL)->id; } for (i = 0; i < sk_OPENSSL_PSTRING_num(tmpdb->data); i++) { pp = sk_OPENSSL_PSTRING_value(tmpdb->data, i); if (pp[DB_srptype][0] == DB_SRP_INDEX) { /* * we add this couple in the internal Stack */ if ((gN = OPENSSL_malloc(sizeof(*gN))) == NULL) goto err; if ((gN->id = OPENSSL_strdup(pp[DB_srpid])) == NULL || (gN->N = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpverifier])) == NULL || (gN->g = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpsalt])) == NULL || sk_SRP_gN_insert(SRP_gN_tab, gN, 0) == 0) goto err; gN = NULL; if (vb->seed_key != NULL) { last_index = pp[DB_srpid]; } } else if (pp[DB_srptype][0] == DB_SRP_VALID) { /* it is a user .... */ const SRP_gN *lgN; if ((lgN = SRP_get_gN_by_id(pp[DB_srpgN], SRP_gN_tab)) != NULL) { error_code = SRP_ERR_MEMORY; if ((user_pwd = SRP_user_pwd_new()) == NULL) goto err; SRP_user_pwd_set_gN(user_pwd, lgN->g, lgN->N); if (!SRP_user_pwd_set1_ids (user_pwd, pp[DB_srpid], pp[DB_srpinfo])) goto err; error_code = SRP_ERR_VBASE_BN_LIB; if (!SRP_user_pwd_set_sv (user_pwd, pp[DB_srpsalt], pp[DB_srpverifier])) goto err; if (sk_SRP_user_pwd_insert(vb->users_pwd, user_pwd, 0) == 0) goto err; user_pwd = NULL; /* abandon responsibility */ } } } if (last_index != NULL) { /* this means that we want to simulate a default user */ if (((gN = SRP_get_gN_by_id(last_index, SRP_gN_tab)) == NULL)) { error_code = SRP_ERR_VBASE_BN_LIB; goto err; } vb->default_g = gN->g; vb->default_N = gN->N; gN = NULL; } error_code = SRP_NO_ERROR; err: /* * there may be still some leaks to fix, if this fails, the application * terminates most likely */ if (gN != NULL) { OPENSSL_free(gN->id); OPENSSL_free(gN); } SRP_user_pwd_free(user_pwd); TXT_DB_free(tmpdb); BIO_free_all(in); sk_SRP_gN_free(SRP_gN_tab); return error_code; } static SRP_user_pwd *find_user(SRP_VBASE *vb, char *username) { int i; SRP_user_pwd *user; if (vb == NULL) return NULL; for (i = 0; i < sk_SRP_user_pwd_num(vb->users_pwd); i++) { user = sk_SRP_user_pwd_value(vb->users_pwd, i); if (strcmp(user->id, username) == 0) return user; } return NULL; } int SRP_VBASE_add0_user(SRP_VBASE *vb, SRP_user_pwd *user_pwd) { if (sk_SRP_user_pwd_push(vb->users_pwd, user_pwd) <= 0) return 0; return 1; } # if !OPENSSL_API_1_1_0 /* * DEPRECATED: use SRP_VBASE_get1_by_user instead. * This method ignores the configured seed and fails for an unknown user. * Ownership of the returned pointer is not released to the caller. * In other words, caller must not free the result. */ SRP_user_pwd *SRP_VBASE_get_by_user(SRP_VBASE *vb, char *username) { return find_user(vb, username); } # endif /* * Ownership of the returned pointer is released to the caller. * In other words, caller must free the result once done. */ SRP_user_pwd *SRP_VBASE_get1_by_user(SRP_VBASE *vb, char *username) { SRP_user_pwd *user; unsigned char digv[SHA_DIGEST_LENGTH]; unsigned char digs[SHA_DIGEST_LENGTH]; EVP_MD_CTX *ctxt = NULL; if (vb == NULL) return NULL; if ((user = find_user(vb, username)) != NULL) return srp_user_pwd_dup(user); if ((vb->seed_key == NULL) || (vb->default_g == NULL) || (vb->default_N == NULL)) return NULL; /* if the user is unknown we set parameters as well if we have a seed_key */ if ((user = SRP_user_pwd_new()) == NULL) return NULL; SRP_user_pwd_set_gN(user, vb->default_g, vb->default_N); if (!SRP_user_pwd_set1_ids(user, username, NULL)) goto err; if (RAND_priv_bytes(digv, SHA_DIGEST_LENGTH) <= 0) goto err; ctxt = EVP_MD_CTX_new(); if (ctxt == NULL || !EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL) || !EVP_DigestUpdate(ctxt, vb->seed_key, strlen(vb->seed_key)) || !EVP_DigestUpdate(ctxt, username, strlen(username)) || !EVP_DigestFinal_ex(ctxt, digs, NULL)) goto err; EVP_MD_CTX_free(ctxt); ctxt = NULL; if (SRP_user_pwd_set0_sv(user, BN_bin2bn(digs, SHA_DIGEST_LENGTH, NULL), BN_bin2bn(digv, SHA_DIGEST_LENGTH, NULL))) return user; err: EVP_MD_CTX_free(ctxt); SRP_user_pwd_free(user); return NULL; } /* * create a verifier (*salt,*verifier,g and N are in base64) */ char *SRP_create_verifier(const char *user, const char *pass, char **salt, char **verifier, const char *N, const char *g) { int len; char *result = NULL, *vf = NULL; const BIGNUM *N_bn = NULL, *g_bn = NULL; BIGNUM *N_bn_alloc = NULL, *g_bn_alloc = NULL, *s = NULL, *v = NULL; unsigned char tmp[MAX_LEN]; unsigned char tmp2[MAX_LEN]; char *defgNid = NULL; int vfsize = 0; if ((user == NULL) || (pass == NULL) || (salt == NULL) || (verifier == NULL)) goto err; if (N) { if ((len = t_fromb64(tmp, sizeof(tmp), N)) <= 0) goto err; N_bn_alloc = BN_bin2bn(tmp, len, NULL); N_bn = N_bn_alloc; if ((len = t_fromb64(tmp, sizeof(tmp) ,g)) <= 0) goto err; g_bn_alloc = BN_bin2bn(tmp, len, NULL); g_bn = g_bn_alloc; defgNid = "*"; } else { SRP_gN *gN = SRP_get_default_gN(g); if (gN == NULL) goto err; N_bn = gN->N; g_bn = gN->g; defgNid = gN->id; } if (*salt == NULL) { if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0) goto err; s = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL); } else { if ((len = t_fromb64(tmp2, sizeof(tmp2), *salt)) <= 0) goto err; s = BN_bin2bn(tmp2, len, NULL); } if (!SRP_create_verifier_BN(user, pass, &s, &v, N_bn, g_bn)) goto err; BN_bn2bin(v, tmp); vfsize = BN_num_bytes(v) * 2; if (((vf = OPENSSL_malloc(vfsize)) == NULL)) goto err; t_tob64(vf, tmp, BN_num_bytes(v)); if (*salt == NULL) { char *tmp_salt; if ((tmp_salt = OPENSSL_malloc(SRP_RANDOM_SALT_LEN * 2)) == NULL) { goto err; } t_tob64(tmp_salt, tmp2, SRP_RANDOM_SALT_LEN); *salt = tmp_salt; } *verifier = vf; vf = NULL; result = defgNid; err: BN_free(N_bn_alloc); BN_free(g_bn_alloc); OPENSSL_clear_free(vf, vfsize); BN_clear_free(s); BN_clear_free(v); return result; } /* * create a verifier (*salt,*verifier,g and N are BIGNUMs). If *salt != NULL * then the provided salt will be used. On successful exit *verifier will point * to a newly allocated BIGNUM containing the verifier and (if a salt was not * provided) *salt will be populated with a newly allocated BIGNUM containing a * random salt. * The caller is responsible for freeing the allocated *salt and *verifier * BIGNUMS. */ int SRP_create_verifier_BN(const char *user, const char *pass, BIGNUM **salt, BIGNUM **verifier, const BIGNUM *N, const BIGNUM *g) { int result = 0; BIGNUM *x = NULL; BN_CTX *bn_ctx = BN_CTX_new(); unsigned char tmp2[MAX_LEN]; BIGNUM *salttmp = NULL; if ((user == NULL) || (pass == NULL) || (salt == NULL) || (verifier == NULL) || (N == NULL) || (g == NULL) || (bn_ctx == NULL)) goto err; if (*salt == NULL) { if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0) goto err; salttmp = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL); } else { salttmp = *salt; } x = SRP_Calc_x(salttmp, user, pass); *verifier = BN_new(); if (*verifier == NULL) goto err; if (!BN_mod_exp(*verifier, g, x, N, bn_ctx)) { BN_clear_free(*verifier); goto err; } result = 1; *salt = salttmp; err: if (salt != NULL && *salt != salttmp) BN_clear_free(salttmp); BN_clear_free(x); BN_CTX_free(bn_ctx); return result; } #endif