/* * Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * SHA256 low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include #include #include #include #include #include "internal/endian.h" int SHA224_Init(SHA256_CTX *c) { memset(c, 0, sizeof(*c)); c->h[0] = 0xc1059ed8UL; c->h[1] = 0x367cd507UL; c->h[2] = 0x3070dd17UL; c->h[3] = 0xf70e5939UL; c->h[4] = 0xffc00b31UL; c->h[5] = 0x68581511UL; c->h[6] = 0x64f98fa7UL; c->h[7] = 0xbefa4fa4UL; c->md_len = SHA224_DIGEST_LENGTH; return 1; } int SHA256_Init(SHA256_CTX *c) { memset(c, 0, sizeof(*c)); c->h[0] = 0x6a09e667UL; c->h[1] = 0xbb67ae85UL; c->h[2] = 0x3c6ef372UL; c->h[3] = 0xa54ff53aUL; c->h[4] = 0x510e527fUL; c->h[5] = 0x9b05688cUL; c->h[6] = 0x1f83d9abUL; c->h[7] = 0x5be0cd19UL; c->md_len = SHA256_DIGEST_LENGTH; return 1; } int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) { return SHA256_Update(c, data, len); } int SHA224_Final(unsigned char *md, SHA256_CTX *c) { return SHA256_Final(md, c); } #define DATA_ORDER_IS_BIG_ENDIAN #define HASH_LONG SHA_LONG #define HASH_CTX SHA256_CTX #define HASH_CBLOCK SHA_CBLOCK /* * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." * default: case below covers for it. It's not clear however if it's * permitted to truncate to amount of bytes not divisible by 4. I bet not, * but if it is, then default: case shall be extended. For reference. * Idea behind separate cases for pre-defined lengths is to let the * compiler decide if it's appropriate to unroll small loops. */ #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ unsigned int nn; \ switch ((c)->md_len) \ { case SHA224_DIGEST_LENGTH: \ for (nn=0;nnh[nn]; (void)HOST_l2c(ll,(s)); } \ break; \ case SHA256_DIGEST_LENGTH: \ for (nn=0;nnh[nn]; (void)HOST_l2c(ll,(s)); } \ break; \ default: \ if ((c)->md_len > SHA256_DIGEST_LENGTH) \ return 0; \ for (nn=0;nn<(c)->md_len/4;nn++) \ { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ break; \ } \ } while (0) #define HASH_UPDATE SHA256_Update #define HASH_TRANSFORM SHA256_Transform #define HASH_FINAL SHA256_Final #define HASH_BLOCK_DATA_ORDER sha256_block_data_order #ifndef SHA256_ASM static #endif void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num); #include "crypto/md32_common.h" #ifndef SHA256_ASM static const SHA_LONG K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; # ifndef PEDANTIC # if defined(__GNUC__) && __GNUC__>=2 && \ !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(__riscv_zknh) # define Sigma0(x) ({ MD32_REG_T ret; \ asm ("sha256sum0 %0, %1" \ : "=r"(ret) \ : "r"(x)); ret; }) # define Sigma1(x) ({ MD32_REG_T ret; \ asm ("sha256sum1 %0, %1" \ : "=r"(ret) \ : "r"(x)); ret; }) # define sigma0(x) ({ MD32_REG_T ret; \ asm ("sha256sig0 %0, %1" \ : "=r"(ret) \ : "r"(x)); ret; }) # define sigma1(x) ({ MD32_REG_T ret; \ asm ("sha256sig1 %0, %1" \ : "=r"(ret) \ : "r"(x)); ret; }) # endif # if defined(__riscv_zbt) || defined(__riscv_zpn) # define Ch(x,y,z) ({ MD32_REG_T ret; \ asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\ : "=r"(ret) \ : "r"(x), "r"(y), "r"(z)); ret; }) # define Maj(x,y,z) ({ MD32_REG_T ret; \ asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\ : "=r"(ret) \ : "r"(x^z), "r"(y), "r"(x)); ret; }) # endif # endif # endif /* * FIPS specification refers to right rotations, while our ROTATE macro * is left one. This is why you might notice that rotation coefficients * differ from those observed in FIPS document by 32-N... */ # ifndef Sigma0 # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) # endif # ifndef Sigma1 # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) # endif # ifndef sigma0 # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) # endif # ifndef sigma1 # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) # endif # ifndef Ch # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) # endif # ifndef Maj # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) # endif # ifdef OPENSSL_SMALL_FOOTPRINT static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num) { unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2; SHA_LONG X[16], l; int i; const unsigned char *data = in; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; for (i = 0; i < 16; i++) { (void)HOST_c2l(data, l); T1 = X[i] = l; T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } for (; i < 64; i++) { s0 = X[(i + 1) & 0x0f]; s0 = sigma0(s0); s1 = X[(i + 14) & 0x0f]; s1 = sigma1(s1); T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf]; T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; } } # else # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ h = Sigma0(a) + Maj(a,b,c); \ d += T1; h += T1; } while (0) # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num) { unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1; SHA_LONG X[16]; int i; const unsigned char *data = in; DECLARE_IS_ENDIAN; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4 && ((size_t)in % 4) == 0) { const SHA_LONG *W = (const SHA_LONG *)data; T1 = X[0] = W[0]; ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = W[1]; ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = W[2]; ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = W[3]; ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = W[4]; ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = W[5]; ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = W[6]; ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = W[7]; ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = W[8]; ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = W[9]; ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = W[10]; ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = W[11]; ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = W[12]; ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = W[13]; ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = W[14]; ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = W[15]; ROUND_00_15(15, b, c, d, e, f, g, h, a); data += SHA256_CBLOCK; } else { SHA_LONG l; (void)HOST_c2l(data, l); T1 = X[0] = l; ROUND_00_15(0, a, b, c, d, e, f, g, h); (void)HOST_c2l(data, l); T1 = X[1] = l; ROUND_00_15(1, h, a, b, c, d, e, f, g); (void)HOST_c2l(data, l); T1 = X[2] = l; ROUND_00_15(2, g, h, a, b, c, d, e, f); (void)HOST_c2l(data, l); T1 = X[3] = l; ROUND_00_15(3, f, g, h, a, b, c, d, e); (void)HOST_c2l(data, l); T1 = X[4] = l; ROUND_00_15(4, e, f, g, h, a, b, c, d); (void)HOST_c2l(data, l); T1 = X[5] = l; ROUND_00_15(5, d, e, f, g, h, a, b, c); (void)HOST_c2l(data, l); T1 = X[6] = l; ROUND_00_15(6, c, d, e, f, g, h, a, b); (void)HOST_c2l(data, l); T1 = X[7] = l; ROUND_00_15(7, b, c, d, e, f, g, h, a); (void)HOST_c2l(data, l); T1 = X[8] = l; ROUND_00_15(8, a, b, c, d, e, f, g, h); (void)HOST_c2l(data, l); T1 = X[9] = l; ROUND_00_15(9, h, a, b, c, d, e, f, g); (void)HOST_c2l(data, l); T1 = X[10] = l; ROUND_00_15(10, g, h, a, b, c, d, e, f); (void)HOST_c2l(data, l); T1 = X[11] = l; ROUND_00_15(11, f, g, h, a, b, c, d, e); (void)HOST_c2l(data, l); T1 = X[12] = l; ROUND_00_15(12, e, f, g, h, a, b, c, d); (void)HOST_c2l(data, l); T1 = X[13] = l; ROUND_00_15(13, d, e, f, g, h, a, b, c); (void)HOST_c2l(data, l); T1 = X[14] = l; ROUND_00_15(14, c, d, e, f, g, h, a, b); (void)HOST_c2l(data, l); T1 = X[15] = l; ROUND_00_15(15, b, c, d, e, f, g, h, a); } for (i = 16; i < 64; i += 8) { ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; } } # endif #endif /* SHA256_ASM */