/* * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/nelem.h" #include "internal/sizes.h" #include "crypto/rsa.h" #include "prov/providercommon.h" #include "prov/implementations.h" #include "prov/provider_ctx.h" #include "prov/der_rsa.h" #include "prov/securitycheck.h" #define RSA_DEFAULT_DIGEST_NAME OSSL_DIGEST_NAME_SHA1 static OSSL_FUNC_signature_newctx_fn rsa_newctx; static OSSL_FUNC_signature_sign_init_fn rsa_sign_init; static OSSL_FUNC_signature_verify_init_fn rsa_verify_init; static OSSL_FUNC_signature_verify_recover_init_fn rsa_verify_recover_init; static OSSL_FUNC_signature_sign_fn rsa_sign; static OSSL_FUNC_signature_verify_fn rsa_verify; static OSSL_FUNC_signature_verify_recover_fn rsa_verify_recover; static OSSL_FUNC_signature_digest_sign_init_fn rsa_digest_sign_init; static OSSL_FUNC_signature_digest_sign_update_fn rsa_digest_signverify_update; static OSSL_FUNC_signature_digest_sign_final_fn rsa_digest_sign_final; static OSSL_FUNC_signature_digest_verify_init_fn rsa_digest_verify_init; static OSSL_FUNC_signature_digest_verify_update_fn rsa_digest_signverify_update; static OSSL_FUNC_signature_digest_verify_final_fn rsa_digest_verify_final; static OSSL_FUNC_signature_freectx_fn rsa_freectx; static OSSL_FUNC_signature_dupctx_fn rsa_dupctx; static OSSL_FUNC_signature_get_ctx_params_fn rsa_get_ctx_params; static OSSL_FUNC_signature_gettable_ctx_params_fn rsa_gettable_ctx_params; static OSSL_FUNC_signature_set_ctx_params_fn rsa_set_ctx_params; static OSSL_FUNC_signature_settable_ctx_params_fn rsa_settable_ctx_params; static OSSL_FUNC_signature_get_ctx_md_params_fn rsa_get_ctx_md_params; static OSSL_FUNC_signature_gettable_ctx_md_params_fn rsa_gettable_ctx_md_params; static OSSL_FUNC_signature_set_ctx_md_params_fn rsa_set_ctx_md_params; static OSSL_FUNC_signature_settable_ctx_md_params_fn rsa_settable_ctx_md_params; static OSSL_ITEM padding_item[] = { { RSA_PKCS1_PADDING, OSSL_PKEY_RSA_PAD_MODE_PKCSV15 }, { RSA_NO_PADDING, OSSL_PKEY_RSA_PAD_MODE_NONE }, { RSA_X931_PADDING, OSSL_PKEY_RSA_PAD_MODE_X931 }, { RSA_PKCS1_PSS_PADDING, OSSL_PKEY_RSA_PAD_MODE_PSS }, { 0, NULL } }; /* * What's passed as an actual key is defined by the KEYMGMT interface. * We happen to know that our KEYMGMT simply passes RSA structures, so * we use that here too. */ typedef struct { OSSL_LIB_CTX *libctx; char *propq; RSA *rsa; int operation; /* * Flag to determine if the hash function can be changed (1) or not (0) * Because it's dangerous to change during a DigestSign or DigestVerify * operation, this flag is cleared by their Init function, and set again * by their Final function. */ unsigned int flag_allow_md : 1; unsigned int mgf1_md_set : 1; /* main digest */ EVP_MD *md; EVP_MD_CTX *mdctx; int mdnid; char mdname[OSSL_MAX_NAME_SIZE]; /* Purely informational */ /* RSA padding mode */ int pad_mode; /* message digest for MGF1 */ EVP_MD *mgf1_md; int mgf1_mdnid; char mgf1_mdname[OSSL_MAX_NAME_SIZE]; /* Purely informational */ /* PSS salt length */ int saltlen; /* Minimum salt length or -1 if no PSS parameter restriction */ int min_saltlen; /* Temp buffer */ unsigned char *tbuf; } PROV_RSA_CTX; /* True if PSS parameters are restricted */ #define rsa_pss_restricted(prsactx) (prsactx->min_saltlen != -1) static size_t rsa_get_md_size(const PROV_RSA_CTX *prsactx) { if (prsactx->md != NULL) return EVP_MD_get_size(prsactx->md); return 0; } static int rsa_check_padding(const PROV_RSA_CTX *prsactx, const char *mdname, const char *mgf1_mdname, int mdnid) { switch (prsactx->pad_mode) { case RSA_NO_PADDING: if (mdname != NULL || mdnid != NID_undef) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_PADDING_MODE); return 0; } break; case RSA_X931_PADDING: if (RSA_X931_hash_id(mdnid) == -1) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_X931_DIGEST); return 0; } break; case RSA_PKCS1_PSS_PADDING: if (rsa_pss_restricted(prsactx)) if ((mdname != NULL && !EVP_MD_is_a(prsactx->md, mdname)) || (mgf1_mdname != NULL && !EVP_MD_is_a(prsactx->mgf1_md, mgf1_mdname))) { ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED); return 0; } break; default: break; } return 1; } static int rsa_check_parameters(PROV_RSA_CTX *prsactx, int min_saltlen) { if (prsactx->pad_mode == RSA_PKCS1_PSS_PADDING) { int max_saltlen; /* See if minimum salt length exceeds maximum possible */ max_saltlen = RSA_size(prsactx->rsa) - EVP_MD_get_size(prsactx->md); if ((RSA_bits(prsactx->rsa) & 0x7) == 1) max_saltlen--; if (min_saltlen < 0 || min_saltlen > max_saltlen) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH); return 0; } prsactx->min_saltlen = min_saltlen; } return 1; } static void *rsa_newctx(void *provctx, const char *propq) { PROV_RSA_CTX *prsactx = NULL; char *propq_copy = NULL; if (!ossl_prov_is_running()) return NULL; if ((prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX))) == NULL || (propq != NULL && (propq_copy = OPENSSL_strdup(propq)) == NULL)) { OPENSSL_free(prsactx); ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } prsactx->libctx = PROV_LIBCTX_OF(provctx); prsactx->flag_allow_md = 1; prsactx->propq = propq_copy; /* Maximum for sign, auto for verify */ prsactx->saltlen = RSA_PSS_SALTLEN_AUTO; prsactx->min_saltlen = -1; return prsactx; } static int rsa_pss_compute_saltlen(PROV_RSA_CTX *ctx) { int saltlen = ctx->saltlen; if (saltlen == RSA_PSS_SALTLEN_DIGEST) { saltlen = EVP_MD_get_size(ctx->md); } else if (saltlen == RSA_PSS_SALTLEN_AUTO || saltlen == RSA_PSS_SALTLEN_MAX) { saltlen = RSA_size(ctx->rsa) - EVP_MD_get_size(ctx->md) - 2; if ((RSA_bits(ctx->rsa) & 0x7) == 1) saltlen--; } if (saltlen < 0) { ERR_raise(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR); return -1; } else if (saltlen < ctx->min_saltlen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_PSS_SALTLEN_TOO_SMALL, "minimum salt length: %d, actual salt length: %d", ctx->min_saltlen, saltlen); return -1; } return saltlen; } static unsigned char *rsa_generate_signature_aid(PROV_RSA_CTX *ctx, unsigned char *aid_buf, size_t buf_len, size_t *aid_len) { WPACKET pkt; unsigned char *aid = NULL; int saltlen; RSA_PSS_PARAMS_30 pss_params; int ret; if (!WPACKET_init_der(&pkt, aid_buf, buf_len)) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } switch (ctx->pad_mode) { case RSA_PKCS1_PADDING: ret = ossl_DER_w_algorithmIdentifier_MDWithRSAEncryption(&pkt, -1, ctx->mdnid); if (ret > 0) { break; } else if (ret == 0) { ERR_raise(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR); goto cleanup; } ERR_raise_data(ERR_LIB_PROV, ERR_R_UNSUPPORTED, "Algorithm ID generation - md NID: %d", ctx->mdnid); goto cleanup; case RSA_PKCS1_PSS_PADDING: saltlen = rsa_pss_compute_saltlen(ctx); if (saltlen < 0) goto cleanup; if (!ossl_rsa_pss_params_30_set_defaults(&pss_params) || !ossl_rsa_pss_params_30_set_hashalg(&pss_params, ctx->mdnid) || !ossl_rsa_pss_params_30_set_maskgenhashalg(&pss_params, ctx->mgf1_mdnid) || !ossl_rsa_pss_params_30_set_saltlen(&pss_params, saltlen) || !ossl_DER_w_algorithmIdentifier_RSA_PSS(&pkt, -1, RSA_FLAG_TYPE_RSASSAPSS, &pss_params)) { ERR_raise(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR); goto cleanup; } break; default: ERR_raise_data(ERR_LIB_PROV, ERR_R_UNSUPPORTED, "Algorithm ID generation - pad mode: %d", ctx->pad_mode); goto cleanup; } if (WPACKET_finish(&pkt)) { WPACKET_get_total_written(&pkt, aid_len); aid = WPACKET_get_curr(&pkt); } cleanup: WPACKET_cleanup(&pkt); return aid; } static int rsa_setup_md(PROV_RSA_CTX *ctx, const char *mdname, const char *mdprops) { if (mdprops == NULL) mdprops = ctx->propq; if (mdname != NULL) { EVP_MD *md = EVP_MD_fetch(ctx->libctx, mdname, mdprops); int sha1_allowed = (ctx->operation != EVP_PKEY_OP_SIGN); int md_nid = ossl_digest_rsa_sign_get_md_nid(ctx->libctx, md, sha1_allowed); size_t mdname_len = strlen(mdname); if (md == NULL || md_nid <= 0 || !rsa_check_padding(ctx, mdname, NULL, md_nid) || mdname_len >= sizeof(ctx->mdname)) { if (md == NULL) ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "%s could not be fetched", mdname); if (md_nid <= 0) ERR_raise_data(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED, "digest=%s", mdname); if (mdname_len >= sizeof(ctx->mdname)) ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "%s exceeds name buffer length", mdname); EVP_MD_free(md); return 0; } if (!ctx->flag_allow_md) { if (ctx->mdname[0] != '\0' && !EVP_MD_is_a(md, ctx->mdname)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED, "digest %s != %s", mdname, ctx->mdname); EVP_MD_free(md); return 0; } EVP_MD_free(md); return 1; } if (!ctx->mgf1_md_set) { if (!EVP_MD_up_ref(md)) { EVP_MD_free(md); return 0; } EVP_MD_free(ctx->mgf1_md); ctx->mgf1_md = md; ctx->mgf1_mdnid = md_nid; OPENSSL_strlcpy(ctx->mgf1_mdname, mdname, sizeof(ctx->mgf1_mdname)); } EVP_MD_CTX_free(ctx->mdctx); EVP_MD_free(ctx->md); ctx->mdctx = NULL; ctx->md = md; ctx->mdnid = md_nid; OPENSSL_strlcpy(ctx->mdname, mdname, sizeof(ctx->mdname)); } return 1; } static int rsa_setup_mgf1_md(PROV_RSA_CTX *ctx, const char *mdname, const char *mdprops) { size_t len; EVP_MD *md = NULL; int mdnid; if (mdprops == NULL) mdprops = ctx->propq; if ((md = EVP_MD_fetch(ctx->libctx, mdname, mdprops)) == NULL) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "%s could not be fetched", mdname); return 0; } /* The default for mgf1 is SHA1 - so allow SHA1 */ if ((mdnid = ossl_digest_rsa_sign_get_md_nid(ctx->libctx, md, 1)) <= 0 || !rsa_check_padding(ctx, NULL, mdname, mdnid)) { if (mdnid <= 0) ERR_raise_data(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED, "digest=%s", mdname); EVP_MD_free(md); return 0; } len = OPENSSL_strlcpy(ctx->mgf1_mdname, mdname, sizeof(ctx->mgf1_mdname)); if (len >= sizeof(ctx->mgf1_mdname)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "%s exceeds name buffer length", mdname); EVP_MD_free(md); return 0; } EVP_MD_free(ctx->mgf1_md); ctx->mgf1_md = md; ctx->mgf1_mdnid = mdnid; ctx->mgf1_md_set = 1; return 1; } static int rsa_signverify_init(void *vprsactx, void *vrsa, const OSSL_PARAM params[], int operation) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (!ossl_prov_is_running() || prsactx == NULL) return 0; if (vrsa == NULL && prsactx->rsa == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_NO_KEY_SET); return 0; } if (vrsa != NULL) { if (!ossl_rsa_check_key(prsactx->libctx, vrsa, operation)) return 0; if (!RSA_up_ref(vrsa)) return 0; RSA_free(prsactx->rsa); prsactx->rsa = vrsa; } prsactx->operation = operation; /* Maximum for sign, auto for verify */ prsactx->saltlen = RSA_PSS_SALTLEN_AUTO; prsactx->min_saltlen = -1; switch (RSA_test_flags(prsactx->rsa, RSA_FLAG_TYPE_MASK)) { case RSA_FLAG_TYPE_RSA: prsactx->pad_mode = RSA_PKCS1_PADDING; break; case RSA_FLAG_TYPE_RSASSAPSS: prsactx->pad_mode = RSA_PKCS1_PSS_PADDING; { const RSA_PSS_PARAMS_30 *pss = ossl_rsa_get0_pss_params_30(prsactx->rsa); if (!ossl_rsa_pss_params_30_is_unrestricted(pss)) { int md_nid = ossl_rsa_pss_params_30_hashalg(pss); int mgf1md_nid = ossl_rsa_pss_params_30_maskgenhashalg(pss); int min_saltlen = ossl_rsa_pss_params_30_saltlen(pss); const char *mdname, *mgf1mdname; size_t len; mdname = ossl_rsa_oaeppss_nid2name(md_nid); mgf1mdname = ossl_rsa_oaeppss_nid2name(mgf1md_nid); if (mdname == NULL) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "PSS restrictions lack hash algorithm"); return 0; } if (mgf1mdname == NULL) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "PSS restrictions lack MGF1 hash algorithm"); return 0; } len = OPENSSL_strlcpy(prsactx->mdname, mdname, sizeof(prsactx->mdname)); if (len >= sizeof(prsactx->mdname)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "hash algorithm name too long"); return 0; } len = OPENSSL_strlcpy(prsactx->mgf1_mdname, mgf1mdname, sizeof(prsactx->mgf1_mdname)); if (len >= sizeof(prsactx->mgf1_mdname)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST, "MGF1 hash algorithm name too long"); return 0; } prsactx->saltlen = min_saltlen; /* call rsa_setup_mgf1_md before rsa_setup_md to avoid duplication */ if (!rsa_setup_mgf1_md(prsactx, mgf1mdname, prsactx->propq) || !rsa_setup_md(prsactx, mdname, prsactx->propq) || !rsa_check_parameters(prsactx, min_saltlen)) return 0; } } break; default: ERR_raise(ERR_LIB_RSA, PROV_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return 0; } if (!rsa_set_ctx_params(prsactx, params)) return 0; return 1; } static int setup_tbuf(PROV_RSA_CTX *ctx) { if (ctx->tbuf != NULL) return 1; if ((ctx->tbuf = OPENSSL_malloc(RSA_size(ctx->rsa))) == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } return 1; } static void clean_tbuf(PROV_RSA_CTX *ctx) { if (ctx->tbuf != NULL) OPENSSL_cleanse(ctx->tbuf, RSA_size(ctx->rsa)); } static void free_tbuf(PROV_RSA_CTX *ctx) { clean_tbuf(ctx); OPENSSL_free(ctx->tbuf); ctx->tbuf = NULL; } static int rsa_sign_init(void *vprsactx, void *vrsa, const OSSL_PARAM params[]) { if (!ossl_prov_is_running()) return 0; return rsa_signverify_init(vprsactx, vrsa, params, EVP_PKEY_OP_SIGN); } static int rsa_sign(void *vprsactx, unsigned char *sig, size_t *siglen, size_t sigsize, const unsigned char *tbs, size_t tbslen) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; int ret; size_t rsasize = RSA_size(prsactx->rsa); size_t mdsize = rsa_get_md_size(prsactx); if (!ossl_prov_is_running()) return 0; if (sig == NULL) { *siglen = rsasize; return 1; } if (sigsize < rsasize) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SIGNATURE_SIZE, "is %zu, should be at least %zu", sigsize, rsasize); return 0; } if (mdsize != 0) { if (tbslen != mdsize) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_DIGEST_LENGTH); return 0; } #ifndef FIPS_MODULE if (EVP_MD_is_a(prsactx->md, OSSL_DIGEST_NAME_MDC2)) { unsigned int sltmp; if (prsactx->pad_mode != RSA_PKCS1_PADDING) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_PADDING_MODE, "only PKCS#1 padding supported with MDC2"); return 0; } ret = RSA_sign_ASN1_OCTET_STRING(0, tbs, tbslen, sig, &sltmp, prsactx->rsa); if (ret <= 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } ret = sltmp; goto end; } #endif switch (prsactx->pad_mode) { case RSA_X931_PADDING: if ((size_t)RSA_size(prsactx->rsa) < tbslen + 1) { ERR_raise_data(ERR_LIB_PROV, PROV_R_KEY_SIZE_TOO_SMALL, "RSA key size = %d, expected minimum = %d", RSA_size(prsactx->rsa), tbslen + 1); return 0; } if (!setup_tbuf(prsactx)) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } memcpy(prsactx->tbuf, tbs, tbslen); prsactx->tbuf[tbslen] = RSA_X931_hash_id(prsactx->mdnid); ret = RSA_private_encrypt(tbslen + 1, prsactx->tbuf, sig, prsactx->rsa, RSA_X931_PADDING); clean_tbuf(prsactx); break; case RSA_PKCS1_PADDING: { unsigned int sltmp; ret = RSA_sign(prsactx->mdnid, tbs, tbslen, sig, &sltmp, prsactx->rsa); if (ret <= 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } ret = sltmp; } break; case RSA_PKCS1_PSS_PADDING: /* Check PSS restrictions */ if (rsa_pss_restricted(prsactx)) { switch (prsactx->saltlen) { case RSA_PSS_SALTLEN_DIGEST: if (prsactx->min_saltlen > EVP_MD_get_size(prsactx->md)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_PSS_SALTLEN_TOO_SMALL, "minimum salt length set to %d, " "but the digest only gives %d", prsactx->min_saltlen, EVP_MD_get_size(prsactx->md)); return 0; } /* FALLTHRU */ default: if (prsactx->saltlen >= 0 && prsactx->saltlen < prsactx->min_saltlen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_PSS_SALTLEN_TOO_SMALL, "minimum salt length set to %d, but the" "actual salt length is only set to %d", prsactx->min_saltlen, prsactx->saltlen); return 0; } break; } } if (!setup_tbuf(prsactx)) return 0; if (!RSA_padding_add_PKCS1_PSS_mgf1(prsactx->rsa, prsactx->tbuf, tbs, prsactx->md, prsactx->mgf1_md, prsactx->saltlen)) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } ret = RSA_private_encrypt(RSA_size(prsactx->rsa), prsactx->tbuf, sig, prsactx->rsa, RSA_NO_PADDING); clean_tbuf(prsactx); break; default: ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_PADDING_MODE, "Only X.931, PKCS#1 v1.5 or PSS padding allowed"); return 0; } } else { ret = RSA_private_encrypt(tbslen, tbs, sig, prsactx->rsa, prsactx->pad_mode); } #ifndef FIPS_MODULE end: #endif if (ret <= 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } *siglen = ret; return 1; } static int rsa_verify_recover_init(void *vprsactx, void *vrsa, const OSSL_PARAM params[]) { if (!ossl_prov_is_running()) return 0; return rsa_signverify_init(vprsactx, vrsa, params, EVP_PKEY_OP_VERIFYRECOVER); } static int rsa_verify_recover(void *vprsactx, unsigned char *rout, size_t *routlen, size_t routsize, const unsigned char *sig, size_t siglen) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; int ret; if (!ossl_prov_is_running()) return 0; if (rout == NULL) { *routlen = RSA_size(prsactx->rsa); return 1; } if (prsactx->md != NULL) { switch (prsactx->pad_mode) { case RSA_X931_PADDING: if (!setup_tbuf(prsactx)) return 0; ret = RSA_public_decrypt(siglen, sig, prsactx->tbuf, prsactx->rsa, RSA_X931_PADDING); if (ret < 1) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } ret--; if (prsactx->tbuf[ret] != RSA_X931_hash_id(prsactx->mdnid)) { ERR_raise(ERR_LIB_PROV, PROV_R_ALGORITHM_MISMATCH); return 0; } if (ret != EVP_MD_get_size(prsactx->md)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST_LENGTH, "Should be %d, but got %d", EVP_MD_get_size(prsactx->md), ret); return 0; } *routlen = ret; if (rout != prsactx->tbuf) { if (routsize < (size_t)ret) { ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, "buffer size is %d, should be %d", routsize, ret); return 0; } memcpy(rout, prsactx->tbuf, ret); } break; case RSA_PKCS1_PADDING: { size_t sltmp; ret = ossl_rsa_verify(prsactx->mdnid, NULL, 0, rout, &sltmp, sig, siglen, prsactx->rsa); if (ret <= 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } ret = sltmp; } break; default: ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_PADDING_MODE, "Only X.931 or PKCS#1 v1.5 padding allowed"); return 0; } } else { ret = RSA_public_decrypt(siglen, sig, rout, prsactx->rsa, prsactx->pad_mode); if (ret < 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } } *routlen = ret; return 1; } static int rsa_verify_init(void *vprsactx, void *vrsa, const OSSL_PARAM params[]) { if (!ossl_prov_is_running()) return 0; return rsa_signverify_init(vprsactx, vrsa, params, EVP_PKEY_OP_VERIFY); } static int rsa_verify(void *vprsactx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; size_t rslen; if (!ossl_prov_is_running()) return 0; if (prsactx->md != NULL) { switch (prsactx->pad_mode) { case RSA_PKCS1_PADDING: if (!RSA_verify(prsactx->mdnid, tbs, tbslen, sig, siglen, prsactx->rsa)) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } return 1; case RSA_X931_PADDING: if (!setup_tbuf(prsactx)) return 0; if (rsa_verify_recover(prsactx, prsactx->tbuf, &rslen, 0, sig, siglen) <= 0) return 0; break; case RSA_PKCS1_PSS_PADDING: { int ret; size_t mdsize; /* * We need to check this for the RSA_verify_PKCS1_PSS_mgf1() * call */ mdsize = rsa_get_md_size(prsactx); if (tbslen != mdsize) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_DIGEST_LENGTH, "Should be %d, but got %d", mdsize, tbslen); return 0; } if (!setup_tbuf(prsactx)) return 0; ret = RSA_public_decrypt(siglen, sig, prsactx->tbuf, prsactx->rsa, RSA_NO_PADDING); if (ret <= 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } ret = RSA_verify_PKCS1_PSS_mgf1(prsactx->rsa, tbs, prsactx->md, prsactx->mgf1_md, prsactx->tbuf, prsactx->saltlen); if (ret <= 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } return 1; } default: ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_PADDING_MODE, "Only X.931, PKCS#1 v1.5 or PSS padding allowed"); return 0; } } else { if (!setup_tbuf(prsactx)) return 0; rslen = RSA_public_decrypt(siglen, sig, prsactx->tbuf, prsactx->rsa, prsactx->pad_mode); if (rslen == 0) { ERR_raise(ERR_LIB_PROV, ERR_R_RSA_LIB); return 0; } } if ((rslen != tbslen) || memcmp(tbs, prsactx->tbuf, rslen)) return 0; return 1; } static int rsa_digest_signverify_init(void *vprsactx, const char *mdname, void *vrsa, const OSSL_PARAM params[], int operation) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (!ossl_prov_is_running()) return 0; if (!rsa_signverify_init(vprsactx, vrsa, params, operation)) return 0; if (mdname != NULL /* was rsa_setup_md already called in rsa_signverify_init()? */ && (mdname[0] == '\0' || OPENSSL_strcasecmp(prsactx->mdname, mdname) != 0) && !rsa_setup_md(prsactx, mdname, prsactx->propq)) return 0; prsactx->flag_allow_md = 0; if (prsactx->mdctx == NULL) { prsactx->mdctx = EVP_MD_CTX_new(); if (prsactx->mdctx == NULL) goto error; } if (!EVP_DigestInit_ex2(prsactx->mdctx, prsactx->md, params)) goto error; return 1; error: EVP_MD_CTX_free(prsactx->mdctx); prsactx->mdctx = NULL; return 0; } static int rsa_digest_signverify_update(void *vprsactx, const unsigned char *data, size_t datalen) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx == NULL || prsactx->mdctx == NULL) return 0; return EVP_DigestUpdate(prsactx->mdctx, data, datalen); } static int rsa_digest_sign_init(void *vprsactx, const char *mdname, void *vrsa, const OSSL_PARAM params[]) { if (!ossl_prov_is_running()) return 0; return rsa_digest_signverify_init(vprsactx, mdname, vrsa, params, EVP_PKEY_OP_SIGN); } static int rsa_digest_sign_final(void *vprsactx, unsigned char *sig, size_t *siglen, size_t sigsize) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; unsigned char digest[EVP_MAX_MD_SIZE]; unsigned int dlen = 0; if (!ossl_prov_is_running() || prsactx == NULL) return 0; prsactx->flag_allow_md = 1; if (prsactx->mdctx == NULL) return 0; /* * If sig is NULL then we're just finding out the sig size. Other fields * are ignored. Defer to rsa_sign. */ if (sig != NULL) { /* * The digests used here are all known (see rsa_get_md_nid()), so they * should not exceed the internal buffer size of EVP_MAX_MD_SIZE. */ if (!EVP_DigestFinal_ex(prsactx->mdctx, digest, &dlen)) return 0; } return rsa_sign(vprsactx, sig, siglen, sigsize, digest, (size_t)dlen); } static int rsa_digest_verify_init(void *vprsactx, const char *mdname, void *vrsa, const OSSL_PARAM params[]) { if (!ossl_prov_is_running()) return 0; return rsa_digest_signverify_init(vprsactx, mdname, vrsa, params, EVP_PKEY_OP_VERIFY); } int rsa_digest_verify_final(void *vprsactx, const unsigned char *sig, size_t siglen) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; unsigned char digest[EVP_MAX_MD_SIZE]; unsigned int dlen = 0; if (!ossl_prov_is_running()) return 0; if (prsactx == NULL) return 0; prsactx->flag_allow_md = 1; if (prsactx->mdctx == NULL) return 0; /* * The digests used here are all known (see rsa_get_md_nid()), so they * should not exceed the internal buffer size of EVP_MAX_MD_SIZE. */ if (!EVP_DigestFinal_ex(prsactx->mdctx, digest, &dlen)) return 0; return rsa_verify(vprsactx, sig, siglen, digest, (size_t)dlen); } static void rsa_freectx(void *vprsactx) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx == NULL) return; EVP_MD_CTX_free(prsactx->mdctx); EVP_MD_free(prsactx->md); EVP_MD_free(prsactx->mgf1_md); OPENSSL_free(prsactx->propq); free_tbuf(prsactx); RSA_free(prsactx->rsa); OPENSSL_clear_free(prsactx, sizeof(*prsactx)); } static void *rsa_dupctx(void *vprsactx) { PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx; PROV_RSA_CTX *dstctx; if (!ossl_prov_is_running()) return NULL; dstctx = OPENSSL_zalloc(sizeof(*srcctx)); if (dstctx == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } *dstctx = *srcctx; dstctx->rsa = NULL; dstctx->md = NULL; dstctx->mdctx = NULL; dstctx->tbuf = NULL; dstctx->propq = NULL; if (srcctx->rsa != NULL && !RSA_up_ref(srcctx->rsa)) goto err; dstctx->rsa = srcctx->rsa; if (srcctx->md != NULL && !EVP_MD_up_ref(srcctx->md)) goto err; dstctx->md = srcctx->md; if (srcctx->mgf1_md != NULL && !EVP_MD_up_ref(srcctx->mgf1_md)) goto err; dstctx->mgf1_md = srcctx->mgf1_md; if (srcctx->mdctx != NULL) { dstctx->mdctx = EVP_MD_CTX_new(); if (dstctx->mdctx == NULL || !EVP_MD_CTX_copy_ex(dstctx->mdctx, srcctx->mdctx)) goto err; } if (srcctx->propq != NULL) { dstctx->propq = OPENSSL_strdup(srcctx->propq); if (dstctx->propq == NULL) goto err; } return dstctx; err: rsa_freectx(dstctx); return NULL; } static int rsa_get_ctx_params(void *vprsactx, OSSL_PARAM *params) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; OSSL_PARAM *p; if (prsactx == NULL) return 0; p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_ALGORITHM_ID); if (p != NULL) { /* The Algorithm Identifier of the combined signature algorithm */ unsigned char aid_buf[128]; unsigned char *aid; size_t aid_len; aid = rsa_generate_signature_aid(prsactx, aid_buf, sizeof(aid_buf), &aid_len); if (aid == NULL || !OSSL_PARAM_set_octet_string(p, aid, aid_len)) return 0; } p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_PAD_MODE); if (p != NULL) switch (p->data_type) { case OSSL_PARAM_INTEGER: if (!OSSL_PARAM_set_int(p, prsactx->pad_mode)) return 0; break; case OSSL_PARAM_UTF8_STRING: { int i; const char *word = NULL; for (i = 0; padding_item[i].id != 0; i++) { if (prsactx->pad_mode == (int)padding_item[i].id) { word = padding_item[i].ptr; break; } } if (word != NULL) { if (!OSSL_PARAM_set_utf8_string(p, word)) return 0; } else { ERR_raise(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR); } } break; default: return 0; } p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_DIGEST); if (p != NULL && !OSSL_PARAM_set_utf8_string(p, prsactx->mdname)) return 0; p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_MGF1_DIGEST); if (p != NULL && !OSSL_PARAM_set_utf8_string(p, prsactx->mgf1_mdname)) return 0; p = OSSL_PARAM_locate(params, OSSL_SIGNATURE_PARAM_PSS_SALTLEN); if (p != NULL) { if (p->data_type == OSSL_PARAM_INTEGER) { if (!OSSL_PARAM_set_int(p, prsactx->saltlen)) return 0; } else if (p->data_type == OSSL_PARAM_UTF8_STRING) { const char *value = NULL; switch (prsactx->saltlen) { case RSA_PSS_SALTLEN_DIGEST: value = OSSL_PKEY_RSA_PSS_SALT_LEN_DIGEST; break; case RSA_PSS_SALTLEN_MAX: value = OSSL_PKEY_RSA_PSS_SALT_LEN_MAX; break; case RSA_PSS_SALTLEN_AUTO: value = OSSL_PKEY_RSA_PSS_SALT_LEN_AUTO; break; default: { int len = BIO_snprintf(p->data, p->data_size, "%d", prsactx->saltlen); if (len <= 0) return 0; p->return_size = len; break; } } if (value != NULL && !OSSL_PARAM_set_utf8_string(p, value)) return 0; } } return 1; } static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_octet_string(OSSL_SIGNATURE_PARAM_ALGORITHM_ID, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PAD_MODE, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_MGF1_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PSS_SALTLEN, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *rsa_gettable_ctx_params(ossl_unused void *vprsactx, ossl_unused void *provctx) { return known_gettable_ctx_params; } static int rsa_set_ctx_params(void *vprsactx, const OSSL_PARAM params[]) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; const OSSL_PARAM *p; int pad_mode; int saltlen; char mdname[OSSL_MAX_NAME_SIZE] = "", *pmdname = NULL; char mdprops[OSSL_MAX_PROPQUERY_SIZE] = "", *pmdprops = NULL; char mgf1mdname[OSSL_MAX_NAME_SIZE] = "", *pmgf1mdname = NULL; char mgf1mdprops[OSSL_MAX_PROPQUERY_SIZE] = "", *pmgf1mdprops = NULL; if (prsactx == NULL) return 0; if (params == NULL) return 1; pad_mode = prsactx->pad_mode; saltlen = prsactx->saltlen; p = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_DIGEST); if (p != NULL) { const OSSL_PARAM *propsp = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_PROPERTIES); pmdname = mdname; if (!OSSL_PARAM_get_utf8_string(p, &pmdname, sizeof(mdname))) return 0; if (propsp != NULL) { pmdprops = mdprops; if (!OSSL_PARAM_get_utf8_string(propsp, &pmdprops, sizeof(mdprops))) return 0; } } p = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_PAD_MODE); if (p != NULL) { const char *err_extra_text = NULL; switch (p->data_type) { case OSSL_PARAM_INTEGER: /* Support for legacy pad mode number */ if (!OSSL_PARAM_get_int(p, &pad_mode)) return 0; break; case OSSL_PARAM_UTF8_STRING: { int i; if (p->data == NULL) return 0; for (i = 0; padding_item[i].id != 0; i++) { if (strcmp(p->data, padding_item[i].ptr) == 0) { pad_mode = padding_item[i].id; break; } } } break; default: return 0; } switch (pad_mode) { case RSA_PKCS1_OAEP_PADDING: /* * OAEP padding is for asymmetric cipher only so is not compatible * with signature use. */ err_extra_text = "OAEP padding not allowed for signing / verifying"; goto bad_pad; case RSA_PKCS1_PSS_PADDING: if ((prsactx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY)) == 0) { err_extra_text = "PSS padding only allowed for sign and verify operations"; goto bad_pad; } break; case RSA_PKCS1_PADDING: err_extra_text = "PKCS#1 padding not allowed with RSA-PSS"; goto cont; case RSA_NO_PADDING: err_extra_text = "No padding not allowed with RSA-PSS"; goto cont; case RSA_X931_PADDING: err_extra_text = "X.931 padding not allowed with RSA-PSS"; cont: if (RSA_test_flags(prsactx->rsa, RSA_FLAG_TYPE_MASK) == RSA_FLAG_TYPE_RSA) break; /* FALLTHRU */ default: bad_pad: if (err_extra_text == NULL) ERR_raise(ERR_LIB_PROV, PROV_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); else ERR_raise_data(ERR_LIB_PROV, PROV_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE, err_extra_text); return 0; } } p = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_PSS_SALTLEN); if (p != NULL) { if (pad_mode != RSA_PKCS1_PSS_PADDING) { ERR_raise_data(ERR_LIB_PROV, PROV_R_NOT_SUPPORTED, "PSS saltlen can only be specified if " "PSS padding has been specified first"); return 0; } switch (p->data_type) { case OSSL_PARAM_INTEGER: /* Support for legacy pad mode number */ if (!OSSL_PARAM_get_int(p, &saltlen)) return 0; break; case OSSL_PARAM_UTF8_STRING: if (strcmp(p->data, OSSL_PKEY_RSA_PSS_SALT_LEN_DIGEST) == 0) saltlen = RSA_PSS_SALTLEN_DIGEST; else if (strcmp(p->data, OSSL_PKEY_RSA_PSS_SALT_LEN_MAX) == 0) saltlen = RSA_PSS_SALTLEN_MAX; else if (strcmp(p->data, OSSL_PKEY_RSA_PSS_SALT_LEN_AUTO) == 0) saltlen = RSA_PSS_SALTLEN_AUTO; else saltlen = atoi(p->data); break; default: return 0; } /* * RSA_PSS_SALTLEN_MAX seems curiously named in this check. * Contrary to what it's name suggests, it's the currently * lowest saltlen number possible. */ if (saltlen < RSA_PSS_SALTLEN_MAX) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH); return 0; } if (rsa_pss_restricted(prsactx)) { switch (saltlen) { case RSA_PSS_SALTLEN_AUTO: if (prsactx->operation == EVP_PKEY_OP_VERIFY) { ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "Cannot use autodetected salt length"); return 0; } break; case RSA_PSS_SALTLEN_DIGEST: if (prsactx->min_saltlen > EVP_MD_get_size(prsactx->md)) { ERR_raise_data(ERR_LIB_PROV, PROV_R_PSS_SALTLEN_TOO_SMALL, "Should be more than %d, but would be " "set to match digest size (%d)", prsactx->min_saltlen, EVP_MD_get_size(prsactx->md)); return 0; } break; default: if (saltlen >= 0 && saltlen < prsactx->min_saltlen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_PSS_SALTLEN_TOO_SMALL, "Should be more than %d, " "but would be set to %d", prsactx->min_saltlen, saltlen); return 0; } } } } p = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_MGF1_DIGEST); if (p != NULL) { const OSSL_PARAM *propsp = OSSL_PARAM_locate_const(params, OSSL_SIGNATURE_PARAM_MGF1_PROPERTIES); pmgf1mdname = mgf1mdname; if (!OSSL_PARAM_get_utf8_string(p, &pmgf1mdname, sizeof(mgf1mdname))) return 0; if (propsp != NULL) { pmgf1mdprops = mgf1mdprops; if (!OSSL_PARAM_get_utf8_string(propsp, &pmgf1mdprops, sizeof(mgf1mdprops))) return 0; } if (pad_mode != RSA_PKCS1_PSS_PADDING) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MGF1_MD); return 0; } } prsactx->saltlen = saltlen; prsactx->pad_mode = pad_mode; if (prsactx->md == NULL && pmdname == NULL && pad_mode == RSA_PKCS1_PSS_PADDING) pmdname = RSA_DEFAULT_DIGEST_NAME; if (pmgf1mdname != NULL && !rsa_setup_mgf1_md(prsactx, pmgf1mdname, pmgf1mdprops)) return 0; if (pmdname != NULL) { if (!rsa_setup_md(prsactx, pmdname, pmdprops)) return 0; } else { if (!rsa_check_padding(prsactx, NULL, NULL, prsactx->mdnid)) return 0; } return 1; } static const OSSL_PARAM settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PAD_MODE, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_MGF1_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_MGF1_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PSS_SALTLEN, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM settable_ctx_params_no_digest[] = { OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PAD_MODE, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_MGF1_DIGEST, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_MGF1_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_SIGNATURE_PARAM_PSS_SALTLEN, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *rsa_settable_ctx_params(void *vprsactx, ossl_unused void *provctx) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx != NULL && !prsactx->flag_allow_md) return settable_ctx_params_no_digest; return settable_ctx_params; } static int rsa_get_ctx_md_params(void *vprsactx, OSSL_PARAM *params) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx->mdctx == NULL) return 0; return EVP_MD_CTX_get_params(prsactx->mdctx, params); } static const OSSL_PARAM *rsa_gettable_ctx_md_params(void *vprsactx) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx->md == NULL) return 0; return EVP_MD_gettable_ctx_params(prsactx->md); } static int rsa_set_ctx_md_params(void *vprsactx, const OSSL_PARAM params[]) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx->mdctx == NULL) return 0; return EVP_MD_CTX_set_params(prsactx->mdctx, params); } static const OSSL_PARAM *rsa_settable_ctx_md_params(void *vprsactx) { PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; if (prsactx->md == NULL) return 0; return EVP_MD_settable_ctx_params(prsactx->md); } const OSSL_DISPATCH ossl_rsa_signature_functions[] = { { OSSL_FUNC_SIGNATURE_NEWCTX, (void (*)(void))rsa_newctx }, { OSSL_FUNC_SIGNATURE_SIGN_INIT, (void (*)(void))rsa_sign_init }, { OSSL_FUNC_SIGNATURE_SIGN, (void (*)(void))rsa_sign }, { OSSL_FUNC_SIGNATURE_VERIFY_INIT, (void (*)(void))rsa_verify_init }, { OSSL_FUNC_SIGNATURE_VERIFY, (void (*)(void))rsa_verify }, { OSSL_FUNC_SIGNATURE_VERIFY_RECOVER_INIT, (void (*)(void))rsa_verify_recover_init }, { OSSL_FUNC_SIGNATURE_VERIFY_RECOVER, (void (*)(void))rsa_verify_recover }, { OSSL_FUNC_SIGNATURE_DIGEST_SIGN_INIT, (void (*)(void))rsa_digest_sign_init }, { OSSL_FUNC_SIGNATURE_DIGEST_SIGN_UPDATE, (void (*)(void))rsa_digest_signverify_update }, { OSSL_FUNC_SIGNATURE_DIGEST_SIGN_FINAL, (void (*)(void))rsa_digest_sign_final }, { OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_INIT, (void (*)(void))rsa_digest_verify_init }, { OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_UPDATE, (void (*)(void))rsa_digest_signverify_update }, { OSSL_FUNC_SIGNATURE_DIGEST_VERIFY_FINAL, (void (*)(void))rsa_digest_verify_final }, { OSSL_FUNC_SIGNATURE_FREECTX, (void (*)(void))rsa_freectx }, { OSSL_FUNC_SIGNATURE_DUPCTX, (void (*)(void))rsa_dupctx }, { OSSL_FUNC_SIGNATURE_GET_CTX_PARAMS, (void (*)(void))rsa_get_ctx_params }, { OSSL_FUNC_SIGNATURE_GETTABLE_CTX_PARAMS, (void (*)(void))rsa_gettable_ctx_params }, { OSSL_FUNC_SIGNATURE_SET_CTX_PARAMS, (void (*)(void))rsa_set_ctx_params }, { OSSL_FUNC_SIGNATURE_SETTABLE_CTX_PARAMS, (void (*)(void))rsa_settable_ctx_params }, { OSSL_FUNC_SIGNATURE_GET_CTX_MD_PARAMS, (void (*)(void))rsa_get_ctx_md_params }, { OSSL_FUNC_SIGNATURE_GETTABLE_CTX_MD_PARAMS, (void (*)(void))rsa_gettable_ctx_md_params }, { OSSL_FUNC_SIGNATURE_SET_CTX_MD_PARAMS, (void (*)(void))rsa_set_ctx_md_params }, { OSSL_FUNC_SIGNATURE_SETTABLE_CTX_MD_PARAMS, (void (*)(void))rsa_settable_ctx_md_params }, { 0, NULL } };