/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "crypto/evp.h" #include "internal/provider_ctx.h" #include "internal/providercommonerr.h" #include "internal/provider_algs.h" #include "internal/provider_util.h" #include "e_os.h" #define HKDF_MAXBUF 1024 static OSSL_OP_kdf_newctx_fn kdf_hkdf_new; static OSSL_OP_kdf_freectx_fn kdf_hkdf_free; static OSSL_OP_kdf_reset_fn kdf_hkdf_reset; static OSSL_OP_kdf_derive_fn kdf_hkdf_derive; static OSSL_OP_kdf_settable_ctx_params_fn kdf_hkdf_settable_ctx_params; static OSSL_OP_kdf_set_ctx_params_fn kdf_hkdf_set_ctx_params; static OSSL_OP_kdf_gettable_ctx_params_fn kdf_hkdf_gettable_ctx_params; static OSSL_OP_kdf_get_ctx_params_fn kdf_hkdf_get_ctx_params; static int HKDF(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *key, size_t key_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len); static int HKDF_Extract(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *ikm, size_t ikm_len, unsigned char *prk, size_t prk_len); static int HKDF_Expand(const EVP_MD *evp_md, const unsigned char *prk, size_t prk_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len); typedef struct { void *provctx; int mode; PROV_DIGEST digest; unsigned char *salt; size_t salt_len; unsigned char *key; size_t key_len; unsigned char info[HKDF_MAXBUF]; size_t info_len; } KDF_HKDF; static void *kdf_hkdf_new(void *provctx) { KDF_HKDF *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); else ctx->provctx = provctx; return ctx; } static void kdf_hkdf_free(void *vctx) { KDF_HKDF *ctx = (KDF_HKDF *)vctx; kdf_hkdf_reset(ctx); OPENSSL_free(ctx); } static void kdf_hkdf_reset(void *vctx) { KDF_HKDF *ctx = (KDF_HKDF *)vctx; ossl_prov_digest_reset(&ctx->digest); OPENSSL_free(ctx->salt); OPENSSL_clear_free(ctx->key, ctx->key_len); OPENSSL_cleanse(ctx->info, ctx->info_len); memset(ctx, 0, sizeof(*ctx)); } static size_t kdf_hkdf_size(KDF_HKDF *ctx) { int sz; const EVP_MD *md = ossl_prov_digest_md(&ctx->digest); if (ctx->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY) return SIZE_MAX; if (md == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } sz = EVP_MD_size(md); if (sz < 0) return 0; return sz; } static int kdf_hkdf_derive(void *vctx, unsigned char *key, size_t keylen) { KDF_HKDF *ctx = (KDF_HKDF *)vctx; const EVP_MD *md = ossl_prov_digest_md(&ctx->digest); if (md == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } if (ctx->key == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); return 0; } switch (ctx->mode) { case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND: return HKDF(md, ctx->salt, ctx->salt_len, ctx->key, ctx->key_len, ctx->info, ctx->info_len, key, keylen); case EVP_KDF_HKDF_MODE_EXTRACT_ONLY: return HKDF_Extract(md, ctx->salt, ctx->salt_len, ctx->key, ctx->key_len, key, keylen); case EVP_KDF_HKDF_MODE_EXPAND_ONLY: return HKDF_Expand(md, ctx->key, ctx->key_len, ctx->info, ctx->info_len, key, keylen); default: return 0; } } static int kdf_hkdf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { const OSSL_PARAM *p; KDF_HKDF *ctx = vctx; OPENSSL_CTX *provctx = PROV_LIBRARY_CONTEXT_OF(ctx->provctx); int n; if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_MODE)) != NULL) { if (p->data_type == OSSL_PARAM_UTF8_STRING) { if (strcasecmp(p->data, "EXTRACT_AND_EXPAND") == 0) { ctx->mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND; } else if (strcasecmp(p->data, "EXTRACT_ONLY") == 0) { ctx->mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY; } else if (strcasecmp(p->data, "EXPAND_ONLY") == 0) { ctx->mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY; } else { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); return 0; } } else if (OSSL_PARAM_get_int(p, &n)) { if (n != EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND && n != EVP_KDF_HKDF_MODE_EXTRACT_ONLY && n != EVP_KDF_HKDF_MODE_EXPAND_ONLY) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); return 0; } ctx->mode = n; } else { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_MODE); return 0; } } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_KEY)) != NULL) { OPENSSL_clear_free(ctx->key, ctx->key_len); ctx->key = NULL; if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->key, 0, &ctx->key_len)) return 0; } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) { if (p->data_size != 0 && p->data != NULL) { OPENSSL_free(ctx->salt); ctx->salt = NULL; if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0, &ctx->salt_len)) return 0; } } /* The info fields concatenate, so process them all */ if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_INFO)) != NULL) { ctx->info_len = 0; for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, OSSL_KDF_PARAM_INFO)) { const void *q = ctx->info + ctx->info_len; size_t sz = 0; if (p->data_size != 0 && p->data != NULL && !OSSL_PARAM_get_octet_string(p, (void **)&q, HKDF_MAXBUF - ctx->info_len, &sz)) return 0; ctx->info_len += sz; } } return 1; } static const OSSL_PARAM *kdf_hkdf_settable_ctx_params(void) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_MODE, NULL, 0), OSSL_PARAM_int(OSSL_KDF_PARAM_MODE, NULL), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_KEY, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_INFO, NULL, 0), OSSL_PARAM_END }; return known_settable_ctx_params; } static int kdf_hkdf_get_ctx_params(void *vctx, OSSL_PARAM params[]) { KDF_HKDF *ctx = (KDF_HKDF *)vctx; OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) return OSSL_PARAM_set_size_t(p, kdf_hkdf_size(ctx)); return -2; } static const OSSL_PARAM *kdf_hkdf_gettable_ctx_params(void) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), OSSL_PARAM_END }; return known_gettable_ctx_params; } const OSSL_DISPATCH kdf_hkdf_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_hkdf_new }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_hkdf_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_hkdf_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_hkdf_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))kdf_hkdf_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_hkdf_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))kdf_hkdf_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_hkdf_get_ctx_params }, { 0, NULL } }; /* * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" * Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and * "Cryptographic Extraction and Key Derivation: The HKDF Scheme" * Section 4.2 (https://eprint.iacr.org/2010/264.pdf). * * From the paper: * The scheme HKDF is specified as: * HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t) * * where: * SKM is source key material * XTS is extractor salt (which may be null or constant) * CTXinfo is context information (may be null) * L is the number of key bits to be produced by KDF * k is the output length in bits of the hash function used with HMAC * t = ceil(L/k) * the value K(t) is truncated to its first d = L mod k bits. * * From RFC 5869: * 2.2. Step 1: Extract * HKDF-Extract(salt, IKM) -> PRK * 2.3. Step 2: Expand * HKDF-Expand(PRK, info, L) -> OKM */ static int HKDF(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *ikm, size_t ikm_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len) { unsigned char prk[EVP_MAX_MD_SIZE]; int ret, sz; size_t prk_len; sz = EVP_MD_size(evp_md); if (sz < 0) return 0; prk_len = (size_t)sz; /* Step 1: HKDF-Extract(salt, IKM) -> PRK */ if (!HKDF_Extract(evp_md, salt, salt_len, ikm, ikm_len, prk, prk_len)) return 0; /* Step 2: HKDF-Expand(PRK, info, L) -> OKM */ ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len); OPENSSL_cleanse(prk, sizeof(prk)); return ret; } /* * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" * Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2). * * 2.2. Step 1: Extract * * HKDF-Extract(salt, IKM) -> PRK * * Options: * Hash a hash function; HashLen denotes the length of the * hash function output in octets * * Inputs: * salt optional salt value (a non-secret random value); * if not provided, it is set to a string of HashLen zeros. * IKM input keying material * * Output: * PRK a pseudorandom key (of HashLen octets) * * The output PRK is calculated as follows: * * PRK = HMAC-Hash(salt, IKM) */ static int HKDF_Extract(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *ikm, size_t ikm_len, unsigned char *prk, size_t prk_len) { int sz = EVP_MD_size(evp_md); if (sz < 0) return 0; if (prk_len != (size_t)sz) { ERR_raise(ERR_LIB_PROV, PROV_R_WRONG_OUTPUT_BUFFER_SIZE); return 0; } /* calc: PRK = HMAC-Hash(salt, IKM) */ return HMAC(evp_md, salt, salt_len, ikm, ikm_len, prk, NULL) != NULL; } /* * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" * Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3). * * 2.3. Step 2: Expand * * HKDF-Expand(PRK, info, L) -> OKM * * Options: * Hash a hash function; HashLen denotes the length of the * hash function output in octets * * Inputs: * PRK a pseudorandom key of at least HashLen octets * (usually, the output from the extract step) * info optional context and application specific information * (can be a zero-length string) * L length of output keying material in octets * (<= 255*HashLen) * * Output: * OKM output keying material (of L octets) * * The output OKM is calculated as follows: * * N = ceil(L/HashLen) * T = T(1) | T(2) | T(3) | ... | T(N) * OKM = first L octets of T * * where: * T(0) = empty string (zero length) * T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) * T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) * T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) * ... * * (where the constant concatenated to the end of each T(n) is a * single octet.) */ static int HKDF_Expand(const EVP_MD *evp_md, const unsigned char *prk, size_t prk_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len) { HMAC_CTX *hmac; int ret = 0, sz; unsigned int i; unsigned char prev[EVP_MAX_MD_SIZE]; size_t done_len = 0, dig_len, n; sz = EVP_MD_size(evp_md); if (sz <= 0) return 0; dig_len = (size_t)sz; /* calc: N = ceil(L/HashLen) */ n = okm_len / dig_len; if (okm_len % dig_len) n++; if (n > 255 || okm == NULL) return 0; if ((hmac = HMAC_CTX_new()) == NULL) return 0; if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL)) goto err; for (i = 1; i <= n; i++) { size_t copy_len; const unsigned char ctr = i; /* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */ if (i > 1) { if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL)) goto err; if (!HMAC_Update(hmac, prev, dig_len)) goto err; } if (!HMAC_Update(hmac, info, info_len)) goto err; if (!HMAC_Update(hmac, &ctr, 1)) goto err; if (!HMAC_Final(hmac, prev, NULL)) goto err; copy_len = (done_len + dig_len > okm_len) ? okm_len - done_len : dig_len; memcpy(okm + done_len, prev, copy_len); done_len += copy_len; } ret = 1; err: OPENSSL_cleanse(prev, sizeof(prev)); HMAC_CTX_free(hmac); return ret; }