sha512.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /* crypto/sha/sha512.c */
  2. /* ====================================================================
  3. * Copyright (c) 2004 The OpenSSL Project. All rights reserved
  4. * according to the OpenSSL license [found in ../../LICENSE].
  5. * ====================================================================
  6. */
  7. #include <openssl/opensslconf.h>
  8. #include <openssl/fips.h>
  9. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
  10. /*
  11. * IMPLEMENTATION NOTES.
  12. *
  13. * As you might have noticed 32-bit hash algorithms:
  14. *
  15. * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
  16. * - optimized versions implement two transform functions: one operating
  17. * on [aligned] data in host byte order and one - on data in input
  18. * stream byte order;
  19. * - share common byte-order neutral collector and padding function
  20. * implementations, ../md32_common.h;
  21. *
  22. * Neither of the above applies to this SHA-512 implementations. Reasons
  23. * [in reverse order] are:
  24. *
  25. * - it's the only 64-bit hash algorithm for the moment of this writing,
  26. * there is no need for common collector/padding implementation [yet];
  27. * - by supporting only one transform function [which operates on
  28. * *aligned* data in input stream byte order, big-endian in this case]
  29. * we minimize burden of maintenance in two ways: a) collector/padding
  30. * function is simpler; b) only one transform function to stare at;
  31. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  32. * apply a number of optimizations to mitigate potential performance
  33. * penalties caused by previous design decision;
  34. *
  35. * Caveat lector.
  36. *
  37. * Implementation relies on the fact that "long long" is 64-bit on
  38. * both 32- and 64-bit platforms. If some compiler vendor comes up
  39. * with 128-bit long long, adjustment to sha.h would be required.
  40. * As this implementation relies on 64-bit integer type, it's totally
  41. * inappropriate for platforms which don't support it, most notably
  42. * 16-bit platforms.
  43. * <appro@fy.chalmers.se>
  44. */
  45. #include <stdlib.h>
  46. #include <string.h>
  47. #include <openssl/crypto.h>
  48. #include <openssl/sha.h>
  49. #include <openssl/opensslv.h>
  50. #include "cryptlib.h"
  51. const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;
  52. #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  53. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  54. defined(__s390__) || defined(__s390x__) || \
  55. defined(SHA512_ASM)
  56. #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  57. #endif
  58. int SHA384_Init (SHA512_CTX *c)
  59. {
  60. #ifdef OPENSSL_FIPS
  61. FIPS_selftest_check();
  62. #endif
  63. c->h[0]=U64(0xcbbb9d5dc1059ed8);
  64. c->h[1]=U64(0x629a292a367cd507);
  65. c->h[2]=U64(0x9159015a3070dd17);
  66. c->h[3]=U64(0x152fecd8f70e5939);
  67. c->h[4]=U64(0x67332667ffc00b31);
  68. c->h[5]=U64(0x8eb44a8768581511);
  69. c->h[6]=U64(0xdb0c2e0d64f98fa7);
  70. c->h[7]=U64(0x47b5481dbefa4fa4);
  71. c->Nl=0; c->Nh=0;
  72. c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
  73. return 1;
  74. }
  75. int SHA512_Init (SHA512_CTX *c)
  76. {
  77. #ifdef OPENSSL_FIPS
  78. FIPS_selftest_check();
  79. #endif
  80. c->h[0]=U64(0x6a09e667f3bcc908);
  81. c->h[1]=U64(0xbb67ae8584caa73b);
  82. c->h[2]=U64(0x3c6ef372fe94f82b);
  83. c->h[3]=U64(0xa54ff53a5f1d36f1);
  84. c->h[4]=U64(0x510e527fade682d1);
  85. c->h[5]=U64(0x9b05688c2b3e6c1f);
  86. c->h[6]=U64(0x1f83d9abfb41bd6b);
  87. c->h[7]=U64(0x5be0cd19137e2179);
  88. c->Nl=0; c->Nh=0;
  89. c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
  90. return 1;
  91. }
  92. #ifndef SHA512_ASM
  93. static
  94. #endif
  95. void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
  96. int SHA512_Final (unsigned char *md, SHA512_CTX *c)
  97. {
  98. unsigned char *p=(unsigned char *)c->u.p;
  99. size_t n=c->num;
  100. p[n]=0x80; /* There always is a room for one */
  101. n++;
  102. if (n > (sizeof(c->u)-16))
  103. memset (p+n,0,sizeof(c->u)-n), n=0,
  104. sha512_block_data_order (c,p,1);
  105. memset (p+n,0,sizeof(c->u)-16-n);
  106. #ifdef B_ENDIAN
  107. c->u.d[SHA_LBLOCK-2] = c->Nh;
  108. c->u.d[SHA_LBLOCK-1] = c->Nl;
  109. #else
  110. p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
  111. p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
  112. p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
  113. p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
  114. p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
  115. p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
  116. p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
  117. p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
  118. p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
  119. p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
  120. p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
  121. p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
  122. p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
  123. p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
  124. p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
  125. p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
  126. #endif
  127. sha512_block_data_order (c,p,1);
  128. if (md==0) return 0;
  129. switch (c->md_len)
  130. {
  131. /* Let compiler decide if it's appropriate to unroll... */
  132. case SHA384_DIGEST_LENGTH:
  133. for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
  134. {
  135. SHA_LONG64 t = c->h[n];
  136. *(md++) = (unsigned char)(t>>56);
  137. *(md++) = (unsigned char)(t>>48);
  138. *(md++) = (unsigned char)(t>>40);
  139. *(md++) = (unsigned char)(t>>32);
  140. *(md++) = (unsigned char)(t>>24);
  141. *(md++) = (unsigned char)(t>>16);
  142. *(md++) = (unsigned char)(t>>8);
  143. *(md++) = (unsigned char)(t);
  144. }
  145. break;
  146. case SHA512_DIGEST_LENGTH:
  147. for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
  148. {
  149. SHA_LONG64 t = c->h[n];
  150. *(md++) = (unsigned char)(t>>56);
  151. *(md++) = (unsigned char)(t>>48);
  152. *(md++) = (unsigned char)(t>>40);
  153. *(md++) = (unsigned char)(t>>32);
  154. *(md++) = (unsigned char)(t>>24);
  155. *(md++) = (unsigned char)(t>>16);
  156. *(md++) = (unsigned char)(t>>8);
  157. *(md++) = (unsigned char)(t);
  158. }
  159. break;
  160. /* ... as well as make sure md_len is not abused. */
  161. default: return 0;
  162. }
  163. return 1;
  164. }
  165. int SHA384_Final (unsigned char *md,SHA512_CTX *c)
  166. { return SHA512_Final (md,c); }
  167. int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
  168. {
  169. SHA_LONG64 l;
  170. unsigned char *p=c->u.p;
  171. const unsigned char *data=(const unsigned char *)_data;
  172. if (len==0) return 1;
  173. l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
  174. if (l < c->Nl) c->Nh++;
  175. if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
  176. c->Nl=l;
  177. if (c->num != 0)
  178. {
  179. size_t n = sizeof(c->u) - c->num;
  180. if (len < n)
  181. {
  182. memcpy (p+c->num,data,len), c->num += len;
  183. return 1;
  184. }
  185. else {
  186. memcpy (p+c->num,data,n), c->num = 0;
  187. len-=n, data+=n;
  188. sha512_block_data_order (c,p,1);
  189. }
  190. }
  191. if (len >= sizeof(c->u))
  192. {
  193. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  194. if ((size_t)data%sizeof(c->u.d[0]) != 0)
  195. while (len >= sizeof(c->u))
  196. memcpy (p,data,sizeof(c->u)),
  197. sha512_block_data_order (c,p,1),
  198. len -= sizeof(c->u),
  199. data += sizeof(c->u);
  200. else
  201. #endif
  202. sha512_block_data_order (c,data,len/sizeof(c->u)),
  203. data += len,
  204. len %= sizeof(c->u),
  205. data -= len;
  206. }
  207. if (len != 0) memcpy (p,data,len), c->num = (int)len;
  208. return 1;
  209. }
  210. int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
  211. { return SHA512_Update (c,data,len); }
  212. void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
  213. { sha512_block_data_order (c,data,1); }
  214. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  215. {
  216. SHA512_CTX c;
  217. static unsigned char m[SHA384_DIGEST_LENGTH];
  218. if (md == NULL) md=m;
  219. SHA384_Init(&c);
  220. SHA512_Update(&c,d,n);
  221. SHA512_Final(md,&c);
  222. OPENSSL_cleanse(&c,sizeof(c));
  223. return(md);
  224. }
  225. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  226. {
  227. SHA512_CTX c;
  228. static unsigned char m[SHA512_DIGEST_LENGTH];
  229. if (md == NULL) md=m;
  230. SHA512_Init(&c);
  231. SHA512_Update(&c,d,n);
  232. SHA512_Final(md,&c);
  233. OPENSSL_cleanse(&c,sizeof(c));
  234. return(md);
  235. }
  236. #ifndef SHA512_ASM
  237. static const SHA_LONG64 K512[80] = {
  238. U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
  239. U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
  240. U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
  241. U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
  242. U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
  243. U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
  244. U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
  245. U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
  246. U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
  247. U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
  248. U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
  249. U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
  250. U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
  251. U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
  252. U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
  253. U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
  254. U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
  255. U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
  256. U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
  257. U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
  258. U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
  259. U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
  260. U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
  261. U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
  262. U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
  263. U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
  264. U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
  265. U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
  266. U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
  267. U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
  268. U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
  269. U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
  270. U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
  271. U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
  272. U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
  273. U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
  274. U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
  275. U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
  276. U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
  277. U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
  278. #ifndef PEDANTIC
  279. # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  280. # if defined(__x86_64) || defined(__x86_64__)
  281. # define ROTR(a,n) ({ unsigned long ret; \
  282. asm ("rorq %1,%0" \
  283. : "=r"(ret) \
  284. : "J"(n),"0"(a) \
  285. : "cc"); ret; })
  286. # if !defined(B_ENDIAN)
  287. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  288. asm ("bswapq %0" \
  289. : "=r"(ret) \
  290. : "0"(ret)); ret; })
  291. # endif
  292. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  293. # if defined(I386_ONLY)
  294. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  295. unsigned int hi,lo; \
  296. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  297. "roll $16,%%eax; roll $16,%%edx; "\
  298. "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
  299. : "=a"(lo),"=d"(hi) \
  300. : "0"(p[1]),"1"(p[0]) : "cc"); \
  301. ((SHA_LONG64)hi)<<32|lo; })
  302. # else
  303. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  304. unsigned int hi,lo; \
  305. asm ("bswapl %0; bswapl %1;" \
  306. : "=r"(lo),"=r"(hi) \
  307. : "0"(p[1]),"1"(p[0])); \
  308. ((SHA_LONG64)hi)<<32|lo; })
  309. # endif
  310. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  311. # define ROTR(a,n) ({ unsigned long ret; \
  312. asm ("rotrdi %0,%1,%2" \
  313. : "=r"(ret) \
  314. : "r"(a),"K"(n)); ret; })
  315. # endif
  316. # elif defined(_MSC_VER)
  317. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  318. # define ROTR(a,n) _rotr64((a),n)
  319. # endif
  320. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  321. # if defined(I386_ONLY)
  322. static SHA_LONG64 __fastcall __pull64be(const void *x)
  323. { _asm mov edx, [ecx + 0]
  324. _asm mov eax, [ecx + 4]
  325. _asm xchg dh,dl
  326. _asm xchg ah,al
  327. _asm rol edx,16
  328. _asm rol eax,16
  329. _asm xchg dh,dl
  330. _asm xchg ah,al
  331. }
  332. # else
  333. static SHA_LONG64 __fastcall __pull64be(const void *x)
  334. { _asm mov edx, [ecx + 0]
  335. _asm mov eax, [ecx + 4]
  336. _asm bswap edx
  337. _asm bswap eax
  338. }
  339. # endif
  340. # define PULL64(x) __pull64be(&(x))
  341. # if _MSC_VER<=1200
  342. # pragma inline_depth(0)
  343. # endif
  344. # endif
  345. # endif
  346. #endif
  347. #ifndef PULL64
  348. #define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  349. #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  350. #endif
  351. #ifndef ROTR
  352. #define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  353. #endif
  354. #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  355. #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  356. #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  357. #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  358. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  359. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  360. #if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
  361. #define GO_FOR_SSE2(ctx,in,num) do { \
  362. void sha512_block_sse2(void *,const void *,size_t); \
  363. if (!(OPENSSL_ia32cap_P & (1<<26))) break; \
  364. sha512_block_sse2(ctx->h,in,num); return; \
  365. } while (0)
  366. #endif
  367. #ifdef OPENSSL_SMALL_FOOTPRINT
  368. static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
  369. {
  370. const SHA_LONG64 *W=in;
  371. SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
  372. SHA_LONG64 X[16];
  373. int i;
  374. #ifdef GO_FOR_SSE2
  375. GO_FOR_SSE2(ctx,in,num);
  376. #endif
  377. while (num--) {
  378. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  379. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  380. for (i=0;i<16;i++)
  381. {
  382. #ifdef B_ENDIAN
  383. T1 = X[i] = W[i];
  384. #else
  385. T1 = X[i] = PULL64(W[i]);
  386. #endif
  387. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  388. T2 = Sigma0(a) + Maj(a,b,c);
  389. h = g; g = f; f = e; e = d + T1;
  390. d = c; c = b; b = a; a = T1 + T2;
  391. }
  392. for (;i<80;i++)
  393. {
  394. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
  395. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
  396. T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
  397. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  398. T2 = Sigma0(a) + Maj(a,b,c);
  399. h = g; g = f; f = e; e = d + T1;
  400. d = c; c = b; b = a; a = T1 + T2;
  401. }
  402. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  403. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  404. W+=SHA_LBLOCK;
  405. }
  406. }
  407. #else
  408. #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  409. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  410. h = Sigma0(a) + Maj(a,b,c); \
  411. d += T1; h += T1; } while (0)
  412. #define ROUND_16_80(i,a,b,c,d,e,f,g,h,X) do { \
  413. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
  414. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
  415. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
  416. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  417. static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
  418. {
  419. const SHA_LONG64 *W=in;
  420. SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
  421. SHA_LONG64 X[16];
  422. int i;
  423. #ifdef GO_FOR_SSE2
  424. GO_FOR_SSE2(ctx,in,num);
  425. #endif
  426. while (num--) {
  427. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  428. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  429. #ifdef B_ENDIAN
  430. T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
  431. T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
  432. T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
  433. T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
  434. T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
  435. T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
  436. T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
  437. T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
  438. T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
  439. T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
  440. T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
  441. T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
  442. T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
  443. T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
  444. T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
  445. T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
  446. #else
  447. T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
  448. T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
  449. T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
  450. T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
  451. T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
  452. T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
  453. T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
  454. T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
  455. T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
  456. T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
  457. T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
  458. T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
  459. T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
  460. T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
  461. T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
  462. T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
  463. #endif
  464. for (i=16;i<80;i+=8)
  465. {
  466. ROUND_16_80(i+0,a,b,c,d,e,f,g,h,X);
  467. ROUND_16_80(i+1,h,a,b,c,d,e,f,g,X);
  468. ROUND_16_80(i+2,g,h,a,b,c,d,e,f,X);
  469. ROUND_16_80(i+3,f,g,h,a,b,c,d,e,X);
  470. ROUND_16_80(i+4,e,f,g,h,a,b,c,d,X);
  471. ROUND_16_80(i+5,d,e,f,g,h,a,b,c,X);
  472. ROUND_16_80(i+6,c,d,e,f,g,h,a,b,X);
  473. ROUND_16_80(i+7,b,c,d,e,f,g,h,a,X);
  474. }
  475. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  476. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  477. W+=SHA_LBLOCK;
  478. }
  479. }
  480. #endif
  481. #endif /* SHA512_ASM */
  482. #endif /* OPENSSL_NO_SHA512 */