a_int.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /* crypto/asn1/a_int.c */
  2. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young (eay@cryptsoft.com).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young (eay@cryptsoft.com)"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.]
  57. */
  58. #include <stdio.h>
  59. #include "cryptlib.h"
  60. #include <openssl/asn1.h>
  61. #include <openssl/bn.h>
  62. ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
  63. { return M_ASN1_INTEGER_dup(x);}
  64. int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
  65. {
  66. int neg, ret;
  67. /* Compare signs */
  68. neg = x->type & V_ASN1_NEG;
  69. if (neg != (y->type & V_ASN1_NEG))
  70. {
  71. if (neg)
  72. return -1;
  73. else
  74. return 1;
  75. }
  76. ret = ASN1_STRING_cmp(x, y);
  77. if (neg)
  78. return -ret;
  79. else
  80. return ret;
  81. }
  82. /*
  83. * This converts an ASN1 INTEGER into its content encoding.
  84. * The internal representation is an ASN1_STRING whose data is a big endian
  85. * representation of the value, ignoring the sign. The sign is determined by
  86. * the type: V_ASN1_INTEGER for positive and V_ASN1_NEG_INTEGER for negative.
  87. *
  88. * Positive integers are no problem: they are almost the same as the DER
  89. * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
  90. *
  91. * Negative integers are a bit trickier...
  92. * The DER representation of negative integers is in 2s complement form.
  93. * The internal form is converted by complementing each octet and finally
  94. * adding one to the result. This can be done less messily with a little trick.
  95. * If the internal form has trailing zeroes then they will become FF by the
  96. * complement and 0 by the add one (due to carry) so just copy as many trailing
  97. * zeros to the destination as there are in the source. The carry will add one
  98. * to the last none zero octet: so complement this octet and add one and finally
  99. * complement any left over until you get to the start of the string.
  100. *
  101. * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
  102. * with 0xff. However if the first byte is 0x80 and one of the following bytes
  103. * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
  104. * followed by optional zeros isn't padded.
  105. */
  106. int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
  107. {
  108. int pad=0,ret,i,neg;
  109. unsigned char *p,*n,pb=0;
  110. if ((a == NULL) || (a->data == NULL)) return(0);
  111. neg=a->type & V_ASN1_NEG;
  112. if (a->length == 0)
  113. ret=1;
  114. else
  115. {
  116. ret=a->length;
  117. i=a->data[0];
  118. if (!neg && (i > 127)) {
  119. pad=1;
  120. pb=0;
  121. } else if(neg) {
  122. if(i>128) {
  123. pad=1;
  124. pb=0xFF;
  125. } else if(i == 128) {
  126. /*
  127. * Special case: if any other bytes non zero we pad:
  128. * otherwise we don't.
  129. */
  130. for(i = 1; i < a->length; i++) if(a->data[i]) {
  131. pad=1;
  132. pb=0xFF;
  133. break;
  134. }
  135. }
  136. }
  137. ret+=pad;
  138. }
  139. if (pp == NULL) return(ret);
  140. p= *pp;
  141. if (pad) *(p++)=pb;
  142. if (a->length == 0) *(p++)=0;
  143. else if (!neg) memcpy(p,a->data,(unsigned int)a->length);
  144. else {
  145. /* Begin at the end of the encoding */
  146. n=a->data + a->length - 1;
  147. p += a->length - 1;
  148. i = a->length;
  149. /* Copy zeros to destination as long as source is zero */
  150. while(!*n) {
  151. *(p--) = 0;
  152. n--;
  153. i--;
  154. }
  155. /* Complement and increment next octet */
  156. *(p--) = ((*(n--)) ^ 0xff) + 1;
  157. i--;
  158. /* Complement any octets left */
  159. for(;i > 0; i--) *(p--) = *(n--) ^ 0xff;
  160. }
  161. *pp+=ret;
  162. return(ret);
  163. }
  164. /* Convert just ASN1 INTEGER content octets to ASN1_INTEGER structure */
  165. ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
  166. long len)
  167. {
  168. ASN1_INTEGER *ret=NULL;
  169. const unsigned char *p, *pend;
  170. unsigned char *to,*s;
  171. int i;
  172. if ((a == NULL) || ((*a) == NULL))
  173. {
  174. if ((ret=M_ASN1_INTEGER_new()) == NULL) return(NULL);
  175. ret->type=V_ASN1_INTEGER;
  176. }
  177. else
  178. ret=(*a);
  179. p= *pp;
  180. pend = p + len;
  181. /* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it
  182. * signifies a missing NULL parameter. */
  183. s=(unsigned char *)OPENSSL_malloc((int)len+1);
  184. if (s == NULL)
  185. {
  186. i=ERR_R_MALLOC_FAILURE;
  187. goto err;
  188. }
  189. to=s;
  190. if(!len) {
  191. /* Strictly speaking this is an illegal INTEGER but we
  192. * tolerate it.
  193. */
  194. ret->type=V_ASN1_INTEGER;
  195. } else if (*p & 0x80) /* a negative number */
  196. {
  197. ret->type=V_ASN1_NEG_INTEGER;
  198. if ((*p == 0xff) && (len != 1)) {
  199. p++;
  200. len--;
  201. }
  202. i = len;
  203. p += i - 1;
  204. to += i - 1;
  205. while((!*p) && i) {
  206. *(to--) = 0;
  207. i--;
  208. p--;
  209. }
  210. /* Special case: if all zeros then the number will be of
  211. * the form FF followed by n zero bytes: this corresponds to
  212. * 1 followed by n zero bytes. We've already written n zeros
  213. * so we just append an extra one and set the first byte to
  214. * a 1. This is treated separately because it is the only case
  215. * where the number of bytes is larger than len.
  216. */
  217. if(!i) {
  218. *s = 1;
  219. s[len] = 0;
  220. len++;
  221. } else {
  222. *(to--) = (*(p--) ^ 0xff) + 1;
  223. i--;
  224. for(;i > 0; i--) *(to--) = *(p--) ^ 0xff;
  225. }
  226. } else {
  227. ret->type=V_ASN1_INTEGER;
  228. if ((*p == 0) && (len != 1))
  229. {
  230. p++;
  231. len--;
  232. }
  233. memcpy(s,p,(int)len);
  234. }
  235. if (ret->data != NULL) OPENSSL_free(ret->data);
  236. ret->data=s;
  237. ret->length=(int)len;
  238. if (a != NULL) (*a)=ret;
  239. *pp=pend;
  240. return(ret);
  241. err:
  242. ASN1err(ASN1_F_C2I_ASN1_INTEGER,i);
  243. if ((ret != NULL) && ((a == NULL) || (*a != ret)))
  244. M_ASN1_INTEGER_free(ret);
  245. return(NULL);
  246. }
  247. /* This is a version of d2i_ASN1_INTEGER that ignores the sign bit of
  248. * ASN1 integers: some broken software can encode a positive INTEGER
  249. * with its MSB set as negative (it doesn't add a padding zero).
  250. */
  251. ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
  252. long length)
  253. {
  254. ASN1_INTEGER *ret=NULL;
  255. const unsigned char *p;
  256. unsigned char *s;
  257. long len;
  258. int inf,tag,xclass;
  259. int i;
  260. if ((a == NULL) || ((*a) == NULL))
  261. {
  262. if ((ret=M_ASN1_INTEGER_new()) == NULL) return(NULL);
  263. ret->type=V_ASN1_INTEGER;
  264. }
  265. else
  266. ret=(*a);
  267. p= *pp;
  268. inf=ASN1_get_object(&p,&len,&tag,&xclass,length);
  269. if (inf & 0x80)
  270. {
  271. i=ASN1_R_BAD_OBJECT_HEADER;
  272. goto err;
  273. }
  274. if (tag != V_ASN1_INTEGER)
  275. {
  276. i=ASN1_R_EXPECTING_AN_INTEGER;
  277. goto err;
  278. }
  279. /* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it
  280. * signifies a missing NULL parameter. */
  281. s=(unsigned char *)OPENSSL_malloc((int)len+1);
  282. if (s == NULL)
  283. {
  284. i=ERR_R_MALLOC_FAILURE;
  285. goto err;
  286. }
  287. ret->type=V_ASN1_INTEGER;
  288. if(len) {
  289. if ((*p == 0) && (len != 1))
  290. {
  291. p++;
  292. len--;
  293. }
  294. memcpy(s,p,(int)len);
  295. p+=len;
  296. }
  297. if (ret->data != NULL) OPENSSL_free(ret->data);
  298. ret->data=s;
  299. ret->length=(int)len;
  300. if (a != NULL) (*a)=ret;
  301. *pp=p;
  302. return(ret);
  303. err:
  304. ASN1err(ASN1_F_D2I_ASN1_UINTEGER,i);
  305. if ((ret != NULL) && ((a == NULL) || (*a != ret)))
  306. M_ASN1_INTEGER_free(ret);
  307. return(NULL);
  308. }
  309. int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
  310. {
  311. int j,k;
  312. unsigned int i;
  313. unsigned char buf[sizeof(long)+1];
  314. long d;
  315. a->type=V_ASN1_INTEGER;
  316. if (a->length < (int)(sizeof(long)+1))
  317. {
  318. if (a->data != NULL)
  319. OPENSSL_free(a->data);
  320. if ((a->data=(unsigned char *)OPENSSL_malloc(sizeof(long)+1)) != NULL)
  321. memset((char *)a->data,0,sizeof(long)+1);
  322. }
  323. if (a->data == NULL)
  324. {
  325. ASN1err(ASN1_F_ASN1_INTEGER_SET,ERR_R_MALLOC_FAILURE);
  326. return(0);
  327. }
  328. d=v;
  329. if (d < 0)
  330. {
  331. d= -d;
  332. a->type=V_ASN1_NEG_INTEGER;
  333. }
  334. for (i=0; i<sizeof(long); i++)
  335. {
  336. if (d == 0) break;
  337. buf[i]=(int)d&0xff;
  338. d>>=8;
  339. }
  340. j=0;
  341. for (k=i-1; k >=0; k--)
  342. a->data[j++]=buf[k];
  343. a->length=j;
  344. return(1);
  345. }
  346. long ASN1_INTEGER_get(const ASN1_INTEGER *a)
  347. {
  348. int neg=0,i;
  349. long r=0;
  350. if (a == NULL) return(0L);
  351. i=a->type;
  352. if (i == V_ASN1_NEG_INTEGER)
  353. neg=1;
  354. else if (i != V_ASN1_INTEGER)
  355. return -1;
  356. if (a->length > (int)sizeof(long))
  357. {
  358. /* hmm... a bit ugly */
  359. return(0xffffffffL);
  360. }
  361. if (a->data == NULL)
  362. return 0;
  363. for (i=0; i<a->length; i++)
  364. {
  365. r<<=8;
  366. r|=(unsigned char)a->data[i];
  367. }
  368. if (neg) r= -r;
  369. return(r);
  370. }
  371. ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
  372. {
  373. ASN1_INTEGER *ret;
  374. int len,j;
  375. if (ai == NULL)
  376. ret=M_ASN1_INTEGER_new();
  377. else
  378. ret=ai;
  379. if (ret == NULL)
  380. {
  381. ASN1err(ASN1_F_BN_TO_ASN1_INTEGER,ERR_R_NESTED_ASN1_ERROR);
  382. goto err;
  383. }
  384. if (BN_is_negative(bn))
  385. ret->type = V_ASN1_NEG_INTEGER;
  386. else ret->type=V_ASN1_INTEGER;
  387. j=BN_num_bits(bn);
  388. len=((j == 0)?0:((j/8)+1));
  389. if (ret->length < len+4)
  390. {
  391. unsigned char *new_data=OPENSSL_realloc(ret->data, len+4);
  392. if (!new_data)
  393. {
  394. ASN1err(ASN1_F_BN_TO_ASN1_INTEGER,ERR_R_MALLOC_FAILURE);
  395. goto err;
  396. }
  397. ret->data=new_data;
  398. }
  399. ret->length=BN_bn2bin(bn,ret->data);
  400. /* Correct zero case */
  401. if(!ret->length)
  402. {
  403. ret->data[0] = 0;
  404. ret->length = 1;
  405. }
  406. return(ret);
  407. err:
  408. if (ret != ai) M_ASN1_INTEGER_free(ret);
  409. return(NULL);
  410. }
  411. BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
  412. {
  413. BIGNUM *ret;
  414. if ((ret=BN_bin2bn(ai->data,ai->length,bn)) == NULL)
  415. ASN1err(ASN1_F_ASN1_INTEGER_TO_BN,ASN1_R_BN_LIB);
  416. else if(ai->type == V_ASN1_NEG_INTEGER)
  417. BN_set_negative(ret, 1);
  418. return(ret);
  419. }
  420. IMPLEMENT_STACK_OF(ASN1_INTEGER)
  421. IMPLEMENT_ASN1_SET_OF(ASN1_INTEGER)