123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- #!/usr/bin/env perl
- #
- # ====================================================================
- # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- #
- # May 2011
- #
- # The module implements bn_GF2m_mul_2x2 polynomial multiplication used
- # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
- # the time being... gcc 4.3 appeared to generate poor code, therefore
- # the effort. And indeed, the module delivers 55%-90%(*) improvement
- # on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit
- # key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196.
- # This is for 64-bit build. In 32-bit "highgprs" case improvement is
- # even higher, for example on z990 it was measured 80%-150%. ECDSA
- # sign is modest 9%-12% faster. Keep in mind that these coefficients
- # are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is
- # burnt in it...
- #
- # (*) gcc 4.1 was observed to deliver better results than gcc 4.3,
- # so that improvement coefficients can vary from one specific
- # setup to another.
- $flavour = shift;
- if ($flavour =~ /3[12]/) {
- $SIZE_T=4;
- $g="";
- } else {
- $SIZE_T=8;
- $g="g";
- }
- while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
- open STDOUT,">$output";
- $stdframe=16*$SIZE_T+4*8;
- $rp="%r2";
- $a1="%r3";
- $a0="%r4";
- $b1="%r5";
- $b0="%r6";
- $ra="%r14";
- $sp="%r15";
- @T=("%r0","%r1");
- @i=("%r12","%r13");
- ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11));
- ($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8;
- $code.=<<___;
- .text
- .type _mul_1x1,\@function
- .align 16
- _mul_1x1:
- lgr $a1,$a
- sllg $a2,$a,1
- sllg $a4,$a,2
- sllg $a8,$a,3
- srag $lo,$a1,63 # broadcast 63rd bit
- nihh $a1,0x1fff
- srag @i[0],$a2,63 # broadcast 62nd bit
- nihh $a2,0x3fff
- srag @i[1],$a4,63 # broadcast 61st bit
- nihh $a4,0x7fff
- ngr $lo,$b
- ngr @i[0],$b
- ngr @i[1],$b
- lghi @T[0],0
- lgr $a12,$a1
- stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0
- xgr $a12,$a2
- stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1
- lgr $a48,$a4
- stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2
- xgr $a48,$a8
- stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2
- xgr $a1,$a4
- stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4
- xgr $a2,$a4
- stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4
- xgr $a12,$a4
- stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4
- xgr $a1,$a48
- stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4
- xgr $a2,$a48
- stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8
- xgr $a12,$a48
- stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8
- xgr $a1,$a4
- stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8
- xgr $a2,$a4
- stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8
- xgr $a12,$a4
- stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8
- srlg $hi,$lo,1
- stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8
- sllg $lo,$lo,63
- stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8
- srlg @T[0],@i[0],2
- stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8
- lghi $mask,`0xf<<3`
- sllg $a1,@i[0],62
- sllg @i[0],$b,3
- srlg @T[1],@i[1],3
- ngr @i[0],$mask
- sllg $a2,@i[1],61
- srlg @i[1],$b,4-3
- xgr $hi,@T[0]
- ngr @i[1],$mask
- xgr $lo,$a1
- xgr $hi,@T[1]
- xgr $lo,$a2
- xg $lo,$stdframe(@i[0],$sp)
- srlg @i[0],$b,8-3
- ngr @i[0],$mask
- ___
- for($n=1;$n<14;$n++) {
- $code.=<<___;
- lg @T[1],$stdframe(@i[1],$sp)
- srlg @i[1],$b,`($n+2)*4`-3
- sllg @T[0],@T[1],`$n*4`
- ngr @i[1],$mask
- srlg @T[1],@T[1],`64-$n*4`
- xgr $lo,@T[0]
- xgr $hi,@T[1]
- ___
- push(@i,shift(@i)); push(@T,shift(@T));
- }
- $code.=<<___;
- lg @T[1],$stdframe(@i[1],$sp)
- sllg @T[0],@T[1],`$n*4`
- srlg @T[1],@T[1],`64-$n*4`
- xgr $lo,@T[0]
- xgr $hi,@T[1]
- lg @T[0],$stdframe(@i[0],$sp)
- sllg @T[1],@T[0],`($n+1)*4`
- srlg @T[0],@T[0],`64-($n+1)*4`
- xgr $lo,@T[1]
- xgr $hi,@T[0]
- br $ra
- .size _mul_1x1,.-_mul_1x1
- .globl bn_GF2m_mul_2x2
- .type bn_GF2m_mul_2x2,\@function
- .align 16
- bn_GF2m_mul_2x2:
- stm${g} %r3,%r15,3*$SIZE_T($sp)
- lghi %r1,-$stdframe-128
- la %r0,0($sp)
- la $sp,0(%r1,$sp) # alloca
- st${g} %r0,0($sp) # back chain
- ___
- if ($SIZE_T==8) {
- my @r=map("%r$_",(6..9));
- $code.=<<___;
- bras $ra,_mul_1x1 # a1·b1
- stmg $lo,$hi,16($rp)
- lg $a,`$stdframe+128+4*$SIZE_T`($sp)
- lg $b,`$stdframe+128+6*$SIZE_T`($sp)
- bras $ra,_mul_1x1 # a0·b0
- stmg $lo,$hi,0($rp)
- lg $a,`$stdframe+128+3*$SIZE_T`($sp)
- lg $b,`$stdframe+128+5*$SIZE_T`($sp)
- xg $a,`$stdframe+128+4*$SIZE_T`($sp)
- xg $b,`$stdframe+128+6*$SIZE_T`($sp)
- bras $ra,_mul_1x1 # (a0+a1)·(b0+b1)
- lmg @r[0],@r[3],0($rp)
- xgr $lo,$hi
- xgr $hi,@r[1]
- xgr $lo,@r[0]
- xgr $hi,@r[2]
- xgr $lo,@r[3]
- xgr $hi,@r[3]
- xgr $lo,$hi
- stg $hi,16($rp)
- stg $lo,8($rp)
- ___
- } else {
- $code.=<<___;
- sllg %r3,%r3,32
- sllg %r5,%r5,32
- or %r3,%r4
- or %r5,%r6
- bras $ra,_mul_1x1
- rllg $lo,$lo,32
- rllg $hi,$hi,32
- stmg $lo,$hi,0($rp)
- ___
- }
- $code.=<<___;
- lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp)
- br $ra
- .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
- .string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
- ___
- $code =~ s/\`([^\`]*)\`/eval($1)/gem;
- print $code;
- close STDOUT;
|