123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- #!/usr/bin/env perl
- # ====================================================================
- # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- # April 2007.
- #
- # Performance improvement over vanilla C code varies from 85% to 45%
- # depending on key length and benchmark. Unfortunately in this context
- # these are not very impressive results [for code that utilizes "wide"
- # 64x64=128-bit multiplication, which is not commonly available to C
- # programmers], at least hand-coded bn_asm.c replacement is known to
- # provide 30-40% better results for longest keys. Well, on a second
- # thought it's not very surprising, because z-CPUs are single-issue
- # and _strictly_ in-order execution, while bn_mul_mont is more or less
- # dependent on CPU ability to pipe-line instructions and have several
- # of them "in-flight" at the same time. I mean while other methods,
- # for example Karatsuba, aim to minimize amount of multiplications at
- # the cost of other operations increase, bn_mul_mont aim to neatly
- # "overlap" multiplications and the other operations [and on most
- # platforms even minimize the amount of the other operations, in
- # particular references to memory]. But it's possible to improve this
- # module performance by implementing dedicated squaring code-path and
- # possibly by unrolling loops...
- # January 2009.
- #
- # Reschedule to minimize/avoid Address Generation Interlock hazard,
- # make inner loops counter-based.
- # November 2010.
- #
- # Adapt for -m31 build. If kernel supports what's called "highgprs"
- # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
- # instructions and achieve "64-bit" performance even in 31-bit legacy
- # application context. The feature is not specific to any particular
- # processor, as long as it's "z-CPU". Latter implies that the code
- # remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
- # is achieved by swapping words after 64-bit loads, follow _dswap-s.
- # On z990 it was measured to perform 2.6-2.2 times better than
- # compiler-generated code, less for longer keys...
- $flavour = shift;
- if ($flavour =~ /3[12]/) {
- $SIZE_T=4;
- $g="";
- } else {
- $SIZE_T=8;
- $g="g";
- }
- while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
- open STDOUT,">$output";
- $stdframe=16*$SIZE_T+4*8;
- $mn0="%r0";
- $num="%r1";
- # int bn_mul_mont(
- $rp="%r2"; # BN_ULONG *rp,
- $ap="%r3"; # const BN_ULONG *ap,
- $bp="%r4"; # const BN_ULONG *bp,
- $np="%r5"; # const BN_ULONG *np,
- $n0="%r6"; # const BN_ULONG *n0,
- #$num="160(%r15)" # int num);
- $bi="%r2"; # zaps rp
- $j="%r7";
- $ahi="%r8";
- $alo="%r9";
- $nhi="%r10";
- $nlo="%r11";
- $AHI="%r12";
- $NHI="%r13";
- $count="%r14";
- $sp="%r15";
- $code.=<<___;
- .text
- .globl bn_mul_mont
- .type bn_mul_mont,\@function
- bn_mul_mont:
- lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num
- sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes
- la $bp,0($num,$bp)
- st${g} %r2,2*$SIZE_T($sp)
- cghi $num,16 #
- lghi %r2,0 #
- blr %r14 # if($num<16) return 0;
- ___
- $code.=<<___ if ($flavour =~ /3[12]/);
- tmll $num,4
- bnzr %r14 # if ($num&1) return 0;
- ___
- $code.=<<___ if ($flavour !~ /3[12]/);
- cghi $num,96 #
- bhr %r14 # if($num>96) return 0;
- ___
- $code.=<<___;
- stm${g} %r3,%r15,3*$SIZE_T($sp)
- lghi $rp,-$stdframe-8 # leave room for carry bit
- lcgr $j,$num # -$num
- lgr %r0,$sp
- la $rp,0($rp,$sp)
- la $sp,0($j,$rp) # alloca
- st${g} %r0,0($sp) # back chain
- sra $num,3 # restore $num
- la $bp,0($j,$bp) # restore $bp
- ahi $num,-1 # adjust $num for inner loop
- lg $n0,0($n0) # pull n0
- _dswap $n0
- lg $bi,0($bp)
- _dswap $bi
- lg $alo,0($ap)
- _dswap $alo
- mlgr $ahi,$bi # ap[0]*bp[0]
- lgr $AHI,$ahi
- lgr $mn0,$alo # "tp[0]"*n0
- msgr $mn0,$n0
- lg $nlo,0($np) #
- _dswap $nlo
- mlgr $nhi,$mn0 # np[0]*m1
- algr $nlo,$alo # +="tp[0]"
- lghi $NHI,0
- alcgr $NHI,$nhi
- la $j,8(%r0) # j=1
- lr $count,$num
- .align 16
- .L1st:
- lg $alo,0($j,$ap)
- _dswap $alo
- mlgr $ahi,$bi # ap[j]*bp[0]
- algr $alo,$AHI
- lghi $AHI,0
- alcgr $AHI,$ahi
- lg $nlo,0($j,$np)
- _dswap $nlo
- mlgr $nhi,$mn0 # np[j]*m1
- algr $nlo,$NHI
- lghi $NHI,0
- alcgr $nhi,$NHI # +="tp[j]"
- algr $nlo,$alo
- alcgr $NHI,$nhi
- stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
- la $j,8($j) # j++
- brct $count,.L1st
- algr $NHI,$AHI
- lghi $AHI,0
- alcgr $AHI,$AHI # upmost overflow bit
- stg $NHI,$stdframe-8($j,$sp)
- stg $AHI,$stdframe($j,$sp)
- la $bp,8($bp) # bp++
- .Louter:
- lg $bi,0($bp) # bp[i]
- _dswap $bi
- lg $alo,0($ap)
- _dswap $alo
- mlgr $ahi,$bi # ap[0]*bp[i]
- alg $alo,$stdframe($sp) # +=tp[0]
- lghi $AHI,0
- alcgr $AHI,$ahi
- lgr $mn0,$alo
- msgr $mn0,$n0 # tp[0]*n0
- lg $nlo,0($np) # np[0]
- _dswap $nlo
- mlgr $nhi,$mn0 # np[0]*m1
- algr $nlo,$alo # +="tp[0]"
- lghi $NHI,0
- alcgr $NHI,$nhi
- la $j,8(%r0) # j=1
- lr $count,$num
- .align 16
- .Linner:
- lg $alo,0($j,$ap)
- _dswap $alo
- mlgr $ahi,$bi # ap[j]*bp[i]
- algr $alo,$AHI
- lghi $AHI,0
- alcgr $ahi,$AHI
- alg $alo,$stdframe($j,$sp)# +=tp[j]
- alcgr $AHI,$ahi
- lg $nlo,0($j,$np)
- _dswap $nlo
- mlgr $nhi,$mn0 # np[j]*m1
- algr $nlo,$NHI
- lghi $NHI,0
- alcgr $nhi,$NHI
- algr $nlo,$alo # +="tp[j]"
- alcgr $NHI,$nhi
- stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
- la $j,8($j) # j++
- brct $count,.Linner
- algr $NHI,$AHI
- lghi $AHI,0
- alcgr $AHI,$AHI
- alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
- lghi $ahi,0
- alcgr $AHI,$ahi # new upmost overflow bit
- stg $NHI,$stdframe-8($j,$sp)
- stg $AHI,$stdframe($j,$sp)
- la $bp,8($bp) # bp++
- cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num]
- jne .Louter
- l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp
- la $ap,$stdframe($sp)
- ahi $num,1 # restore $num, incidentally clears "borrow"
- la $j,0(%r0)
- lr $count,$num
- .Lsub: lg $alo,0($j,$ap)
- lg $nlo,0($j,$np)
- _dswap $nlo
- slbgr $alo,$nlo
- stg $alo,0($j,$rp)
- la $j,8($j)
- brct $count,.Lsub
- lghi $ahi,0
- slbgr $AHI,$ahi # handle upmost carry
- ngr $ap,$AHI
- lghi $np,-1
- xgr $np,$AHI
- ngr $np,$rp
- ogr $ap,$np # ap=borrow?tp:rp
- la $j,0(%r0)
- lgr $count,$num
- .Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh
- _dswap $alo
- stg $j,$stdframe($j,$sp) # zap tp
- stg $alo,0($j,$rp)
- la $j,8($j)
- brct $count,.Lcopy
- la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
- lm${g} %r6,%r15,0(%r1)
- lghi %r2,1 # signal "processed"
- br %r14
- .size bn_mul_mont,.-bn_mul_mont
- .string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
- ___
- foreach (split("\n",$code)) {
- s/\`([^\`]*)\`/eval $1/ge;
- s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
- print $_,"\n";
- }
- close STDOUT;
|