eng_rsax.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665
  1. /* crypto/engine/eng_rsax.c */
  2. /* Copyright (c) 2010-2010 Intel Corp.
  3. * Author: Vinodh.Gopal@intel.com
  4. * Jim Guilford
  5. * Erdinc.Ozturk@intel.com
  6. * Maxim.Perminov@intel.com
  7. * Ying.Huang@intel.com
  8. *
  9. * More information about algorithm used can be found at:
  10. * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
  11. */
  12. /* ====================================================================
  13. * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. *
  19. * 1. Redistributions of source code must retain the above copyright
  20. * notice, this list of conditions and the following disclaimer.
  21. *
  22. * 2. Redistributions in binary form must reproduce the above copyright
  23. * notice, this list of conditions and the following disclaimer in
  24. * the documentation and/or other materials provided with the
  25. * distribution.
  26. *
  27. * 3. All advertising materials mentioning features or use of this
  28. * software must display the following acknowledgment:
  29. * "This product includes software developed by the OpenSSL Project
  30. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  31. *
  32. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  33. * endorse or promote products derived from this software without
  34. * prior written permission. For written permission, please contact
  35. * licensing@OpenSSL.org.
  36. *
  37. * 5. Products derived from this software may not be called "OpenSSL"
  38. * nor may "OpenSSL" appear in their names without prior written
  39. * permission of the OpenSSL Project.
  40. *
  41. * 6. Redistributions of any form whatsoever must retain the following
  42. * acknowledgment:
  43. * "This product includes software developed by the OpenSSL Project
  44. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  45. *
  46. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  47. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  48. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  49. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  50. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  51. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  52. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  53. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  54. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  55. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  56. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  57. * OF THE POSSIBILITY OF SUCH DAMAGE.
  58. * ====================================================================
  59. *
  60. * This product includes cryptographic software written by Eric Young
  61. * (eay@cryptsoft.com). This product includes software written by Tim
  62. * Hudson (tjh@cryptsoft.com).
  63. */
  64. #include <openssl/opensslconf.h>
  65. #include <stdio.h>
  66. #include <string.h>
  67. #include <openssl/crypto.h>
  68. #include <openssl/buffer.h>
  69. #include <openssl/engine.h>
  70. #ifndef OPENSSL_NO_RSA
  71. #include <openssl/rsa.h>
  72. #endif
  73. #include <openssl/bn.h>
  74. #include <openssl/err.h>
  75. /* RSAX is available **ONLY* on x86_64 CPUs */
  76. #undef COMPILE_RSAX
  77. #if (defined(__x86_64) || defined(__x86_64__) || \
  78. defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
  79. #define COMPILE_RSAX
  80. static ENGINE *ENGINE_rsax (void);
  81. #endif
  82. void ENGINE_load_rsax (void)
  83. {
  84. /* On non-x86 CPUs it just returns. */
  85. #ifdef COMPILE_RSAX
  86. ENGINE *toadd = ENGINE_rsax();
  87. if(!toadd) return;
  88. ENGINE_add(toadd);
  89. ENGINE_free(toadd);
  90. ERR_clear_error();
  91. #endif
  92. }
  93. #ifdef COMPILE_RSAX
  94. #define E_RSAX_LIB_NAME "rsax engine"
  95. static int e_rsax_destroy(ENGINE *e);
  96. static int e_rsax_init(ENGINE *e);
  97. static int e_rsax_finish(ENGINE *e);
  98. static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
  99. #ifndef OPENSSL_NO_RSA
  100. /* RSA stuff */
  101. static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
  102. static int e_rsax_rsa_finish(RSA *r);
  103. static int (*def_rsa_finish)(RSA *r);
  104. #endif
  105. static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
  106. {0, NULL, NULL, 0}
  107. };
  108. #ifndef OPENSSL_NO_RSA
  109. /* Our internal RSA_METHOD that we provide pointers to */
  110. static RSA_METHOD e_rsax_rsa =
  111. {
  112. "Intel RSA-X method",
  113. NULL,
  114. NULL,
  115. NULL,
  116. NULL,
  117. e_rsax_rsa_mod_exp,
  118. NULL,
  119. NULL,
  120. e_rsax_rsa_finish,
  121. RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE,
  122. NULL,
  123. NULL,
  124. NULL
  125. };
  126. #endif
  127. /* Constants used when creating the ENGINE */
  128. static const char *engine_e_rsax_id = "rsax";
  129. static const char *engine_e_rsax_name = "RSAX engine support";
  130. /* This internal function is used by ENGINE_rsax() */
  131. static int bind_helper(ENGINE *e)
  132. {
  133. #ifndef OPENSSL_NO_RSA
  134. const RSA_METHOD *meth1;
  135. #endif
  136. if(!ENGINE_set_id(e, engine_e_rsax_id) ||
  137. !ENGINE_set_name(e, engine_e_rsax_name) ||
  138. #ifndef OPENSSL_NO_RSA
  139. !ENGINE_set_RSA(e, &e_rsax_rsa) ||
  140. #endif
  141. !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
  142. !ENGINE_set_init_function(e, e_rsax_init) ||
  143. !ENGINE_set_finish_function(e, e_rsax_finish) ||
  144. !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
  145. !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
  146. return 0;
  147. #ifndef OPENSSL_NO_RSA
  148. meth1 = RSA_PKCS1_SSLeay();
  149. e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
  150. e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
  151. e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
  152. e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
  153. e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
  154. def_rsa_finish = meth1->finish;
  155. #endif
  156. return 1;
  157. }
  158. static ENGINE *ENGINE_rsax(void)
  159. {
  160. ENGINE *ret = ENGINE_new();
  161. if(!ret)
  162. return NULL;
  163. if(!bind_helper(ret))
  164. {
  165. ENGINE_free(ret);
  166. return NULL;
  167. }
  168. return ret;
  169. }
  170. #ifndef OPENSSL_NO_RSA
  171. /* Used to attach our own key-data to an RSA structure */
  172. static int rsax_ex_data_idx = -1;
  173. #endif
  174. static int e_rsax_destroy(ENGINE *e)
  175. {
  176. return 1;
  177. }
  178. /* (de)initialisation functions. */
  179. static int e_rsax_init(ENGINE *e)
  180. {
  181. #ifndef OPENSSL_NO_RSA
  182. if (rsax_ex_data_idx == -1)
  183. rsax_ex_data_idx = RSA_get_ex_new_index(0,
  184. NULL,
  185. NULL, NULL, NULL);
  186. #endif
  187. if (rsax_ex_data_idx == -1)
  188. return 0;
  189. return 1;
  190. }
  191. static int e_rsax_finish(ENGINE *e)
  192. {
  193. return 1;
  194. }
  195. static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
  196. {
  197. int to_return = 1;
  198. switch(cmd)
  199. {
  200. /* The command isn't understood by this engine */
  201. default:
  202. to_return = 0;
  203. break;
  204. }
  205. return to_return;
  206. }
  207. #ifndef OPENSSL_NO_RSA
  208. #ifdef _WIN32
  209. typedef unsigned __int64 UINT64;
  210. #else
  211. typedef unsigned long long UINT64;
  212. #endif
  213. typedef unsigned short UINT16;
  214. /* Table t is interleaved in the following manner:
  215. * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ...
  216. * A particular 512-bit value is stored in t[][index] rather than the more
  217. * normal t[index][]; i.e. the qwords of a particular entry in t are not
  218. * adjacent in memory
  219. */
  220. /* Init BIGNUM b from the interleaved UINT64 array */
  221. static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array);
  222. /* Extract array elements from BIGNUM b
  223. * To set the whole array from b, call with n=8
  224. */
  225. static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array);
  226. struct mod_ctx_512 {
  227. UINT64 t[8][8];
  228. UINT64 m[8];
  229. UINT64 m1[8]; /* 2^278 % m */
  230. UINT64 m2[8]; /* 2^640 % m */
  231. UINT64 k1[2]; /* (- 1/m) % 2^128 */
  232. };
  233. static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);
  234. void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
  235. UINT64 *g, /* 512 bits, 8 qwords */
  236. UINT64 *exp, /* 512 bits, 8 qwords */
  237. struct mod_ctx_512 *data);
  238. typedef struct st_e_rsax_mod_ctx
  239. {
  240. UINT64 type;
  241. union {
  242. struct mod_ctx_512 b512;
  243. } ctx;
  244. } E_RSAX_MOD_CTX;
  245. static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m)
  246. {
  247. E_RSAX_MOD_CTX *hptr;
  248. if (idx < 0 || idx > 2)
  249. return NULL;
  250. hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
  251. if (!hptr) {
  252. hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX));
  253. if (!hptr) return NULL;
  254. hptr[2].type = hptr[1].type= hptr[0].type = 0;
  255. RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
  256. }
  257. if (hptr[idx].type == (UINT64)BN_num_bits(m))
  258. return hptr+idx;
  259. if (BN_num_bits(m) == 512) {
  260. UINT64 _m[8];
  261. bn_extract_to_array_512(m, 8, _m);
  262. memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
  263. mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
  264. }
  265. hptr[idx].type = BN_num_bits(m);
  266. return hptr+idx;
  267. }
  268. static int e_rsax_rsa_finish(RSA *rsa)
  269. {
  270. E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
  271. if(!hptr) return 0;
  272. OPENSSL_free(hptr);
  273. RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
  274. if (def_rsa_finish)
  275. def_rsa_finish(rsa);
  276. return 1;
  277. }
  278. static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
  279. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx )
  280. {
  281. if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
  282. if (BN_num_bits(m) == 512) {
  283. UINT64 _r[8];
  284. UINT64 _g[8];
  285. UINT64 _e[8];
  286. /* Init the arrays from the BIGNUMs */
  287. bn_extract_to_array_512(g, 8, _g);
  288. bn_extract_to_array_512(e, 8, _e);
  289. mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
  290. /* Return the result in the BIGNUM */
  291. interleaved_array_to_bn_512(r, _r);
  292. return 1;
  293. }
  294. }
  295. return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
  296. }
  297. /* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
  298. * exponentiation routine precalculations and a structure to hold the
  299. * necessary values. These files are meant to live in crypto/rsa/ in
  300. * the target openssl.
  301. */
  302. /*
  303. * Local method: extracts a piece from a BIGNUM, to fit it into
  304. * an array. Call with n=8 to extract an entire 512-bit BIGNUM
  305. */
  306. static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array)
  307. {
  308. int i;
  309. UINT64 tmp;
  310. unsigned char bn_buff[64];
  311. memset(bn_buff, 0, 64);
  312. if (BN_num_bytes(b) > 64) {
  313. printf ("Can't support this byte size\n");
  314. return 0; }
  315. if (BN_num_bytes(b)!=0) {
  316. if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) {
  317. printf ("Error's in bn2bin\n");
  318. /* We have to error, here */
  319. return 0; } }
  320. while (n-- > 0) {
  321. array[n] = 0;
  322. for (i=7; i>=0; i--) {
  323. tmp = bn_buff[63-(n*8+i)];
  324. array[n] |= tmp << (8*i); } }
  325. return 1;
  326. }
  327. /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
  328. static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array)
  329. {
  330. unsigned char tmp[64];
  331. int n=8;
  332. int i;
  333. while (n-- > 0) {
  334. for (i = 7; i>=0; i--) {
  335. tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } }
  336. BN_bin2bn(tmp, 64, b);
  337. return 0;
  338. }
  339. /* The main 512bit precompute call */
  340. static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
  341. {
  342. BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;
  343. /* We need a BN_CTX for the modulo functions */
  344. BN_CTX* ctx;
  345. /* Some tmps */
  346. UINT64 _t[8];
  347. int i, j, ret = 0;
  348. /* Init _m with m */
  349. BN_init(&_m);
  350. interleaved_array_to_bn_512(&_m, m);
  351. memset(_t, 0, 64);
  352. /* Inits */
  353. BN_init(&two_768);
  354. BN_init(&two_640);
  355. BN_init(&two_128);
  356. BN_init(&two_512);
  357. BN_init(&tmp);
  358. BN_init(&tmp2);
  359. /* Create our context */
  360. if ((ctx=BN_CTX_new()) == NULL) { goto err; }
  361. BN_CTX_start(ctx);
  362. /*
  363. * For production, if you care, these only need to be set once,
  364. * and may be made constants.
  365. */
  366. BN_lshift(&two_768, BN_value_one(), 768);
  367. BN_lshift(&two_640, BN_value_one(), 640);
  368. BN_lshift(&two_128, BN_value_one(), 128);
  369. BN_lshift(&two_512, BN_value_one(), 512);
  370. if (0 == (m[7] & 0x8000000000000000)) {
  371. exit(1);
  372. }
  373. if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
  374. exit(1);
  375. }
  376. /* Precompute m1 */
  377. BN_mod(&tmp, &two_768, &_m, ctx);
  378. if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
  379. goto err; }
  380. /* Precompute m2 */
  381. BN_mod(&tmp, &two_640, &_m, ctx);
  382. if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
  383. goto err;
  384. }
  385. /*
  386. * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
  387. * be non-negative.
  388. */
  389. BN_mod_inverse(&tmp, &_m, &two_128, ctx);
  390. if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); }
  391. if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
  392. goto err; }
  393. /* Precompute t */
  394. for (i=0; i<8; i++) {
  395. BN_zero(&tmp);
  396. if (i & 1) { BN_add(&tmp, &two_512, &tmp); }
  397. if (i & 2) { BN_add(&tmp, &two_512, &tmp); }
  398. if (i & 4) { BN_add(&tmp, &two_640, &tmp); }
  399. BN_nnmod(&tmp2, &tmp, &_m, ctx);
  400. if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
  401. goto err; }
  402. for (j=0; j<8; j++) data->t[j][i] = _t[j]; }
  403. /* Precompute m */
  404. for (i=0; i<8; i++) {
  405. data->m[i] = m[i]; }
  406. ret = 1;
  407. err:
  408. /* Cleanup */
  409. if (ctx != NULL) {
  410. BN_CTX_end(ctx); BN_CTX_free(ctx); }
  411. BN_free(&two_768);
  412. BN_free(&two_640);
  413. BN_free(&two_128);
  414. BN_free(&two_512);
  415. BN_free(&tmp);
  416. BN_free(&tmp2);
  417. BN_free(&_m);
  418. return ret;
  419. }
  420. static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
  421. {
  422. BIGNUM *r1,*m1,*vrfy;
  423. BIGNUM local_dmp1,local_dmq1,local_c,local_r1;
  424. BIGNUM *dmp1,*dmq1,*c,*pr1;
  425. int ret=0;
  426. BN_CTX_start(ctx);
  427. r1 = BN_CTX_get(ctx);
  428. m1 = BN_CTX_get(ctx);
  429. vrfy = BN_CTX_get(ctx);
  430. {
  431. BIGNUM local_p, local_q;
  432. BIGNUM *p = NULL, *q = NULL;
  433. int error = 0;
  434. /* Make sure BN_mod_inverse in Montgomery
  435. * intialization uses the BN_FLG_CONSTTIME flag
  436. * (unless RSA_FLAG_NO_CONSTTIME is set)
  437. */
  438. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  439. {
  440. BN_init(&local_p);
  441. p = &local_p;
  442. BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
  443. BN_init(&local_q);
  444. q = &local_q;
  445. BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
  446. }
  447. else
  448. {
  449. p = rsa->p;
  450. q = rsa->q;
  451. }
  452. if (rsa->flags & RSA_FLAG_CACHE_PRIVATE)
  453. {
  454. if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
  455. error = 1;
  456. if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
  457. error = 1;
  458. }
  459. /* clean up */
  460. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  461. {
  462. BN_free(&local_p);
  463. BN_free(&local_q);
  464. }
  465. if ( error )
  466. goto err;
  467. }
  468. if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
  469. if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
  470. goto err;
  471. /* compute I mod q */
  472. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  473. {
  474. c = &local_c;
  475. BN_with_flags(c, I, BN_FLG_CONSTTIME);
  476. if (!BN_mod(r1,c,rsa->q,ctx)) goto err;
  477. }
  478. else
  479. {
  480. if (!BN_mod(r1,I,rsa->q,ctx)) goto err;
  481. }
  482. /* compute r1^dmq1 mod q */
  483. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  484. {
  485. dmq1 = &local_dmq1;
  486. BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
  487. }
  488. else
  489. dmq1 = rsa->dmq1;
  490. if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx,
  491. rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q) )) goto err;
  492. /* compute I mod p */
  493. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  494. {
  495. c = &local_c;
  496. BN_with_flags(c, I, BN_FLG_CONSTTIME);
  497. if (!BN_mod(r1,c,rsa->p,ctx)) goto err;
  498. }
  499. else
  500. {
  501. if (!BN_mod(r1,I,rsa->p,ctx)) goto err;
  502. }
  503. /* compute r1^dmp1 mod p */
  504. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  505. {
  506. dmp1 = &local_dmp1;
  507. BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
  508. }
  509. else
  510. dmp1 = rsa->dmp1;
  511. if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx,
  512. rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p) )) goto err;
  513. if (!BN_sub(r0,r0,m1)) goto err;
  514. /* This will help stop the size of r0 increasing, which does
  515. * affect the multiply if it optimised for a power of 2 size */
  516. if (BN_is_negative(r0))
  517. if (!BN_add(r0,r0,rsa->p)) goto err;
  518. if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err;
  519. /* Turn BN_FLG_CONSTTIME flag on before division operation */
  520. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  521. {
  522. pr1 = &local_r1;
  523. BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
  524. }
  525. else
  526. pr1 = r1;
  527. if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err;
  528. /* If p < q it is occasionally possible for the correction of
  529. * adding 'p' if r0 is negative above to leave the result still
  530. * negative. This can break the private key operations: the following
  531. * second correction should *always* correct this rare occurrence.
  532. * This will *never* happen with OpenSSL generated keys because
  533. * they ensure p > q [steve]
  534. */
  535. if (BN_is_negative(r0))
  536. if (!BN_add(r0,r0,rsa->p)) goto err;
  537. if (!BN_mul(r1,r0,rsa->q,ctx)) goto err;
  538. if (!BN_add(r0,r1,m1)) goto err;
  539. if (rsa->e && rsa->n)
  540. {
  541. if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) ))
  542. goto err;
  543. /* If 'I' was greater than (or equal to) rsa->n, the operation
  544. * will be equivalent to using 'I mod n'. However, the result of
  545. * the verify will *always* be less than 'n' so we don't check
  546. * for absolute equality, just congruency. */
  547. if (!BN_sub(vrfy, vrfy, I)) goto err;
  548. if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err;
  549. if (BN_is_negative(vrfy))
  550. if (!BN_add(vrfy, vrfy, rsa->n)) goto err;
  551. if (!BN_is_zero(vrfy))
  552. {
  553. /* 'I' and 'vrfy' aren't congruent mod n. Don't leak
  554. * miscalculated CRT output, just do a raw (slower)
  555. * mod_exp and return that instead. */
  556. BIGNUM local_d;
  557. BIGNUM *d = NULL;
  558. if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
  559. {
  560. d = &local_d;
  561. BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
  562. }
  563. else
  564. d = rsa->d;
  565. if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx,
  566. rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err;
  567. }
  568. }
  569. ret=1;
  570. err:
  571. BN_CTX_end(ctx);
  572. return ret;
  573. }
  574. #endif /* !OPENSSL_NO_RSA */
  575. #endif /* !COMPILE_RSAX */