aes_x86core.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. /*
  2. * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * This is experimental x86[_64] derivative. It assumes little-endian
  11. * byte order and expects CPU to sustain unaligned memory references.
  12. * It is used as playground for cache-time attack mitigations and
  13. * serves as reference C implementation for x86[_64] as well as some
  14. * other assembly modules.
  15. */
  16. /**
  17. * rijndael-alg-fst.c
  18. *
  19. * @version 3.0 (December 2000)
  20. *
  21. * Optimised ANSI C code for the Rijndael cipher (now AES)
  22. *
  23. * @author Vincent Rijmen
  24. * @author Antoon Bosselaers
  25. * @author Paulo Barreto
  26. *
  27. * This code is hereby placed in the public domain.
  28. *
  29. * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
  30. * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  31. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  32. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
  33. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  34. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  36. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  37. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  38. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
  39. * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  40. */
  41. #include <assert.h>
  42. #include <stdlib.h>
  43. #include <openssl/aes.h>
  44. #include "aes_locl.h"
  45. /*
  46. * These two parameters control which table, 256-byte or 2KB, is
  47. * referenced in outer and respectively inner rounds.
  48. */
  49. #define AES_COMPACT_IN_OUTER_ROUNDS
  50. #ifdef AES_COMPACT_IN_OUTER_ROUNDS
  51. /* AES_COMPACT_IN_OUTER_ROUNDS costs ~30% in performance, while
  52. * adding AES_COMPACT_IN_INNER_ROUNDS reduces benchmark *further*
  53. * by factor of ~2. */
  54. # undef AES_COMPACT_IN_INNER_ROUNDS
  55. #endif
  56. #if 1
  57. static void prefetch256(const void *table)
  58. {
  59. volatile unsigned long *t=(void *)table,ret;
  60. unsigned long sum;
  61. int i;
  62. /* 32 is common least cache-line size */
  63. for (sum=0,i=0;i<256/sizeof(t[0]);i+=32/sizeof(t[0])) sum ^= t[i];
  64. ret = sum;
  65. }
  66. #else
  67. # define prefetch256(t)
  68. #endif
  69. #undef GETU32
  70. #define GETU32(p) (*((u32*)(p)))
  71. #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
  72. typedef unsigned __int64 u64;
  73. #define U64(C) C##UI64
  74. #elif defined(__arch64__)
  75. typedef unsigned long u64;
  76. #define U64(C) C##UL
  77. #else
  78. typedef unsigned long long u64;
  79. #define U64(C) C##ULL
  80. #endif
  81. #undef ROTATE
  82. #if defined(_MSC_VER)
  83. # define ROTATE(a,n) _lrotl(a,n)
  84. #elif defined(__ICC)
  85. # define ROTATE(a,n) _rotl(a,n)
  86. #elif defined(__GNUC__) && __GNUC__>=2
  87. # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
  88. # define ROTATE(a,n) ({ register unsigned int ret; \
  89. asm ( \
  90. "roll %1,%0" \
  91. : "=r"(ret) \
  92. : "I"(n), "0"(a) \
  93. : "cc"); \
  94. ret; \
  95. })
  96. # endif
  97. #endif
  98. /*-
  99. Te [x] = S [x].[02, 01, 01, 03, 02, 01, 01, 03];
  100. Te0[x] = S [x].[02, 01, 01, 03];
  101. Te1[x] = S [x].[03, 02, 01, 01];
  102. Te2[x] = S [x].[01, 03, 02, 01];
  103. Te3[x] = S [x].[01, 01, 03, 02];
  104. */
  105. #define Te0 (u32)((u64*)((u8*)Te+0))
  106. #define Te1 (u32)((u64*)((u8*)Te+3))
  107. #define Te2 (u32)((u64*)((u8*)Te+2))
  108. #define Te3 (u32)((u64*)((u8*)Te+1))
  109. /*-
  110. Td [x] = Si[x].[0e, 09, 0d, 0b, 0e, 09, 0d, 0b];
  111. Td0[x] = Si[x].[0e, 09, 0d, 0b];
  112. Td1[x] = Si[x].[0b, 0e, 09, 0d];
  113. Td2[x] = Si[x].[0d, 0b, 0e, 09];
  114. Td3[x] = Si[x].[09, 0d, 0b, 0e];
  115. Td4[x] = Si[x].[01];
  116. */
  117. #define Td0 (u32)((u64*)((u8*)Td+0))
  118. #define Td1 (u32)((u64*)((u8*)Td+3))
  119. #define Td2 (u32)((u64*)((u8*)Td+2))
  120. #define Td3 (u32)((u64*)((u8*)Td+1))
  121. static const u64 Te[256] = {
  122. U64(0xa56363c6a56363c6), U64(0x847c7cf8847c7cf8),
  123. U64(0x997777ee997777ee), U64(0x8d7b7bf68d7b7bf6),
  124. U64(0x0df2f2ff0df2f2ff), U64(0xbd6b6bd6bd6b6bd6),
  125. U64(0xb16f6fdeb16f6fde), U64(0x54c5c59154c5c591),
  126. U64(0x5030306050303060), U64(0x0301010203010102),
  127. U64(0xa96767cea96767ce), U64(0x7d2b2b567d2b2b56),
  128. U64(0x19fefee719fefee7), U64(0x62d7d7b562d7d7b5),
  129. U64(0xe6abab4de6abab4d), U64(0x9a7676ec9a7676ec),
  130. U64(0x45caca8f45caca8f), U64(0x9d82821f9d82821f),
  131. U64(0x40c9c98940c9c989), U64(0x877d7dfa877d7dfa),
  132. U64(0x15fafaef15fafaef), U64(0xeb5959b2eb5959b2),
  133. U64(0xc947478ec947478e), U64(0x0bf0f0fb0bf0f0fb),
  134. U64(0xecadad41ecadad41), U64(0x67d4d4b367d4d4b3),
  135. U64(0xfda2a25ffda2a25f), U64(0xeaafaf45eaafaf45),
  136. U64(0xbf9c9c23bf9c9c23), U64(0xf7a4a453f7a4a453),
  137. U64(0x967272e4967272e4), U64(0x5bc0c09b5bc0c09b),
  138. U64(0xc2b7b775c2b7b775), U64(0x1cfdfde11cfdfde1),
  139. U64(0xae93933dae93933d), U64(0x6a26264c6a26264c),
  140. U64(0x5a36366c5a36366c), U64(0x413f3f7e413f3f7e),
  141. U64(0x02f7f7f502f7f7f5), U64(0x4fcccc834fcccc83),
  142. U64(0x5c3434685c343468), U64(0xf4a5a551f4a5a551),
  143. U64(0x34e5e5d134e5e5d1), U64(0x08f1f1f908f1f1f9),
  144. U64(0x937171e2937171e2), U64(0x73d8d8ab73d8d8ab),
  145. U64(0x5331316253313162), U64(0x3f15152a3f15152a),
  146. U64(0x0c0404080c040408), U64(0x52c7c79552c7c795),
  147. U64(0x6523234665232346), U64(0x5ec3c39d5ec3c39d),
  148. U64(0x2818183028181830), U64(0xa1969637a1969637),
  149. U64(0x0f05050a0f05050a), U64(0xb59a9a2fb59a9a2f),
  150. U64(0x0907070e0907070e), U64(0x3612122436121224),
  151. U64(0x9b80801b9b80801b), U64(0x3de2e2df3de2e2df),
  152. U64(0x26ebebcd26ebebcd), U64(0x6927274e6927274e),
  153. U64(0xcdb2b27fcdb2b27f), U64(0x9f7575ea9f7575ea),
  154. U64(0x1b0909121b090912), U64(0x9e83831d9e83831d),
  155. U64(0x742c2c58742c2c58), U64(0x2e1a1a342e1a1a34),
  156. U64(0x2d1b1b362d1b1b36), U64(0xb26e6edcb26e6edc),
  157. U64(0xee5a5ab4ee5a5ab4), U64(0xfba0a05bfba0a05b),
  158. U64(0xf65252a4f65252a4), U64(0x4d3b3b764d3b3b76),
  159. U64(0x61d6d6b761d6d6b7), U64(0xceb3b37dceb3b37d),
  160. U64(0x7b2929527b292952), U64(0x3ee3e3dd3ee3e3dd),
  161. U64(0x712f2f5e712f2f5e), U64(0x9784841397848413),
  162. U64(0xf55353a6f55353a6), U64(0x68d1d1b968d1d1b9),
  163. U64(0x0000000000000000), U64(0x2cededc12cededc1),
  164. U64(0x6020204060202040), U64(0x1ffcfce31ffcfce3),
  165. U64(0xc8b1b179c8b1b179), U64(0xed5b5bb6ed5b5bb6),
  166. U64(0xbe6a6ad4be6a6ad4), U64(0x46cbcb8d46cbcb8d),
  167. U64(0xd9bebe67d9bebe67), U64(0x4b3939724b393972),
  168. U64(0xde4a4a94de4a4a94), U64(0xd44c4c98d44c4c98),
  169. U64(0xe85858b0e85858b0), U64(0x4acfcf854acfcf85),
  170. U64(0x6bd0d0bb6bd0d0bb), U64(0x2aefefc52aefefc5),
  171. U64(0xe5aaaa4fe5aaaa4f), U64(0x16fbfbed16fbfbed),
  172. U64(0xc5434386c5434386), U64(0xd74d4d9ad74d4d9a),
  173. U64(0x5533336655333366), U64(0x9485851194858511),
  174. U64(0xcf45458acf45458a), U64(0x10f9f9e910f9f9e9),
  175. U64(0x0602020406020204), U64(0x817f7ffe817f7ffe),
  176. U64(0xf05050a0f05050a0), U64(0x443c3c78443c3c78),
  177. U64(0xba9f9f25ba9f9f25), U64(0xe3a8a84be3a8a84b),
  178. U64(0xf35151a2f35151a2), U64(0xfea3a35dfea3a35d),
  179. U64(0xc0404080c0404080), U64(0x8a8f8f058a8f8f05),
  180. U64(0xad92923fad92923f), U64(0xbc9d9d21bc9d9d21),
  181. U64(0x4838387048383870), U64(0x04f5f5f104f5f5f1),
  182. U64(0xdfbcbc63dfbcbc63), U64(0xc1b6b677c1b6b677),
  183. U64(0x75dadaaf75dadaaf), U64(0x6321214263212142),
  184. U64(0x3010102030101020), U64(0x1affffe51affffe5),
  185. U64(0x0ef3f3fd0ef3f3fd), U64(0x6dd2d2bf6dd2d2bf),
  186. U64(0x4ccdcd814ccdcd81), U64(0x140c0c18140c0c18),
  187. U64(0x3513132635131326), U64(0x2fececc32fececc3),
  188. U64(0xe15f5fbee15f5fbe), U64(0xa2979735a2979735),
  189. U64(0xcc444488cc444488), U64(0x3917172e3917172e),
  190. U64(0x57c4c49357c4c493), U64(0xf2a7a755f2a7a755),
  191. U64(0x827e7efc827e7efc), U64(0x473d3d7a473d3d7a),
  192. U64(0xac6464c8ac6464c8), U64(0xe75d5dbae75d5dba),
  193. U64(0x2b1919322b191932), U64(0x957373e6957373e6),
  194. U64(0xa06060c0a06060c0), U64(0x9881811998818119),
  195. U64(0xd14f4f9ed14f4f9e), U64(0x7fdcdca37fdcdca3),
  196. U64(0x6622224466222244), U64(0x7e2a2a547e2a2a54),
  197. U64(0xab90903bab90903b), U64(0x8388880b8388880b),
  198. U64(0xca46468cca46468c), U64(0x29eeeec729eeeec7),
  199. U64(0xd3b8b86bd3b8b86b), U64(0x3c1414283c141428),
  200. U64(0x79dedea779dedea7), U64(0xe25e5ebce25e5ebc),
  201. U64(0x1d0b0b161d0b0b16), U64(0x76dbdbad76dbdbad),
  202. U64(0x3be0e0db3be0e0db), U64(0x5632326456323264),
  203. U64(0x4e3a3a744e3a3a74), U64(0x1e0a0a141e0a0a14),
  204. U64(0xdb494992db494992), U64(0x0a06060c0a06060c),
  205. U64(0x6c2424486c242448), U64(0xe45c5cb8e45c5cb8),
  206. U64(0x5dc2c29f5dc2c29f), U64(0x6ed3d3bd6ed3d3bd),
  207. U64(0xefacac43efacac43), U64(0xa66262c4a66262c4),
  208. U64(0xa8919139a8919139), U64(0xa4959531a4959531),
  209. U64(0x37e4e4d337e4e4d3), U64(0x8b7979f28b7979f2),
  210. U64(0x32e7e7d532e7e7d5), U64(0x43c8c88b43c8c88b),
  211. U64(0x5937376e5937376e), U64(0xb76d6ddab76d6dda),
  212. U64(0x8c8d8d018c8d8d01), U64(0x64d5d5b164d5d5b1),
  213. U64(0xd24e4e9cd24e4e9c), U64(0xe0a9a949e0a9a949),
  214. U64(0xb46c6cd8b46c6cd8), U64(0xfa5656acfa5656ac),
  215. U64(0x07f4f4f307f4f4f3), U64(0x25eaeacf25eaeacf),
  216. U64(0xaf6565caaf6565ca), U64(0x8e7a7af48e7a7af4),
  217. U64(0xe9aeae47e9aeae47), U64(0x1808081018080810),
  218. U64(0xd5baba6fd5baba6f), U64(0x887878f0887878f0),
  219. U64(0x6f25254a6f25254a), U64(0x722e2e5c722e2e5c),
  220. U64(0x241c1c38241c1c38), U64(0xf1a6a657f1a6a657),
  221. U64(0xc7b4b473c7b4b473), U64(0x51c6c69751c6c697),
  222. U64(0x23e8e8cb23e8e8cb), U64(0x7cdddda17cdddda1),
  223. U64(0x9c7474e89c7474e8), U64(0x211f1f3e211f1f3e),
  224. U64(0xdd4b4b96dd4b4b96), U64(0xdcbdbd61dcbdbd61),
  225. U64(0x868b8b0d868b8b0d), U64(0x858a8a0f858a8a0f),
  226. U64(0x907070e0907070e0), U64(0x423e3e7c423e3e7c),
  227. U64(0xc4b5b571c4b5b571), U64(0xaa6666ccaa6666cc),
  228. U64(0xd8484890d8484890), U64(0x0503030605030306),
  229. U64(0x01f6f6f701f6f6f7), U64(0x120e0e1c120e0e1c),
  230. U64(0xa36161c2a36161c2), U64(0x5f35356a5f35356a),
  231. U64(0xf95757aef95757ae), U64(0xd0b9b969d0b9b969),
  232. U64(0x9186861791868617), U64(0x58c1c19958c1c199),
  233. U64(0x271d1d3a271d1d3a), U64(0xb99e9e27b99e9e27),
  234. U64(0x38e1e1d938e1e1d9), U64(0x13f8f8eb13f8f8eb),
  235. U64(0xb398982bb398982b), U64(0x3311112233111122),
  236. U64(0xbb6969d2bb6969d2), U64(0x70d9d9a970d9d9a9),
  237. U64(0x898e8e07898e8e07), U64(0xa7949433a7949433),
  238. U64(0xb69b9b2db69b9b2d), U64(0x221e1e3c221e1e3c),
  239. U64(0x9287871592878715), U64(0x20e9e9c920e9e9c9),
  240. U64(0x49cece8749cece87), U64(0xff5555aaff5555aa),
  241. U64(0x7828285078282850), U64(0x7adfdfa57adfdfa5),
  242. U64(0x8f8c8c038f8c8c03), U64(0xf8a1a159f8a1a159),
  243. U64(0x8089890980898909), U64(0x170d0d1a170d0d1a),
  244. U64(0xdabfbf65dabfbf65), U64(0x31e6e6d731e6e6d7),
  245. U64(0xc6424284c6424284), U64(0xb86868d0b86868d0),
  246. U64(0xc3414182c3414182), U64(0xb0999929b0999929),
  247. U64(0x772d2d5a772d2d5a), U64(0x110f0f1e110f0f1e),
  248. U64(0xcbb0b07bcbb0b07b), U64(0xfc5454a8fc5454a8),
  249. U64(0xd6bbbb6dd6bbbb6d), U64(0x3a16162c3a16162c)
  250. };
  251. static const u8 Te4[256] = {
  252. 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U,
  253. 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U,
  254. 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U,
  255. 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U,
  256. 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU,
  257. 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U,
  258. 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU,
  259. 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U,
  260. 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U,
  261. 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U,
  262. 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU,
  263. 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU,
  264. 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U,
  265. 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U,
  266. 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U,
  267. 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U,
  268. 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U,
  269. 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U,
  270. 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U,
  271. 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU,
  272. 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU,
  273. 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U,
  274. 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U,
  275. 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U,
  276. 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U,
  277. 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU,
  278. 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU,
  279. 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU,
  280. 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U,
  281. 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU,
  282. 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U,
  283. 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U
  284. };
  285. static const u64 Td[256] = {
  286. U64(0x50a7f45150a7f451), U64(0x5365417e5365417e),
  287. U64(0xc3a4171ac3a4171a), U64(0x965e273a965e273a),
  288. U64(0xcb6bab3bcb6bab3b), U64(0xf1459d1ff1459d1f),
  289. U64(0xab58faacab58faac), U64(0x9303e34b9303e34b),
  290. U64(0x55fa302055fa3020), U64(0xf66d76adf66d76ad),
  291. U64(0x9176cc889176cc88), U64(0x254c02f5254c02f5),
  292. U64(0xfcd7e54ffcd7e54f), U64(0xd7cb2ac5d7cb2ac5),
  293. U64(0x8044352680443526), U64(0x8fa362b58fa362b5),
  294. U64(0x495ab1de495ab1de), U64(0x671bba25671bba25),
  295. U64(0x980eea45980eea45), U64(0xe1c0fe5de1c0fe5d),
  296. U64(0x02752fc302752fc3), U64(0x12f04c8112f04c81),
  297. U64(0xa397468da397468d), U64(0xc6f9d36bc6f9d36b),
  298. U64(0xe75f8f03e75f8f03), U64(0x959c9215959c9215),
  299. U64(0xeb7a6dbfeb7a6dbf), U64(0xda595295da595295),
  300. U64(0x2d83bed42d83bed4), U64(0xd3217458d3217458),
  301. U64(0x2969e0492969e049), U64(0x44c8c98e44c8c98e),
  302. U64(0x6a89c2756a89c275), U64(0x78798ef478798ef4),
  303. U64(0x6b3e58996b3e5899), U64(0xdd71b927dd71b927),
  304. U64(0xb64fe1beb64fe1be), U64(0x17ad88f017ad88f0),
  305. U64(0x66ac20c966ac20c9), U64(0xb43ace7db43ace7d),
  306. U64(0x184adf63184adf63), U64(0x82311ae582311ae5),
  307. U64(0x6033519760335197), U64(0x457f5362457f5362),
  308. U64(0xe07764b1e07764b1), U64(0x84ae6bbb84ae6bbb),
  309. U64(0x1ca081fe1ca081fe), U64(0x942b08f9942b08f9),
  310. U64(0x5868487058684870), U64(0x19fd458f19fd458f),
  311. U64(0x876cde94876cde94), U64(0xb7f87b52b7f87b52),
  312. U64(0x23d373ab23d373ab), U64(0xe2024b72e2024b72),
  313. U64(0x578f1fe3578f1fe3), U64(0x2aab55662aab5566),
  314. U64(0x0728ebb20728ebb2), U64(0x03c2b52f03c2b52f),
  315. U64(0x9a7bc5869a7bc586), U64(0xa50837d3a50837d3),
  316. U64(0xf2872830f2872830), U64(0xb2a5bf23b2a5bf23),
  317. U64(0xba6a0302ba6a0302), U64(0x5c8216ed5c8216ed),
  318. U64(0x2b1ccf8a2b1ccf8a), U64(0x92b479a792b479a7),
  319. U64(0xf0f207f3f0f207f3), U64(0xa1e2694ea1e2694e),
  320. U64(0xcdf4da65cdf4da65), U64(0xd5be0506d5be0506),
  321. U64(0x1f6234d11f6234d1), U64(0x8afea6c48afea6c4),
  322. U64(0x9d532e349d532e34), U64(0xa055f3a2a055f3a2),
  323. U64(0x32e18a0532e18a05), U64(0x75ebf6a475ebf6a4),
  324. U64(0x39ec830b39ec830b), U64(0xaaef6040aaef6040),
  325. U64(0x069f715e069f715e), U64(0x51106ebd51106ebd),
  326. U64(0xf98a213ef98a213e), U64(0x3d06dd963d06dd96),
  327. U64(0xae053eddae053edd), U64(0x46bde64d46bde64d),
  328. U64(0xb58d5491b58d5491), U64(0x055dc471055dc471),
  329. U64(0x6fd406046fd40604), U64(0xff155060ff155060),
  330. U64(0x24fb981924fb9819), U64(0x97e9bdd697e9bdd6),
  331. U64(0xcc434089cc434089), U64(0x779ed967779ed967),
  332. U64(0xbd42e8b0bd42e8b0), U64(0x888b8907888b8907),
  333. U64(0x385b19e7385b19e7), U64(0xdbeec879dbeec879),
  334. U64(0x470a7ca1470a7ca1), U64(0xe90f427ce90f427c),
  335. U64(0xc91e84f8c91e84f8), U64(0x0000000000000000),
  336. U64(0x8386800983868009), U64(0x48ed2b3248ed2b32),
  337. U64(0xac70111eac70111e), U64(0x4e725a6c4e725a6c),
  338. U64(0xfbff0efdfbff0efd), U64(0x5638850f5638850f),
  339. U64(0x1ed5ae3d1ed5ae3d), U64(0x27392d3627392d36),
  340. U64(0x64d90f0a64d90f0a), U64(0x21a65c6821a65c68),
  341. U64(0xd1545b9bd1545b9b), U64(0x3a2e36243a2e3624),
  342. U64(0xb1670a0cb1670a0c), U64(0x0fe757930fe75793),
  343. U64(0xd296eeb4d296eeb4), U64(0x9e919b1b9e919b1b),
  344. U64(0x4fc5c0804fc5c080), U64(0xa220dc61a220dc61),
  345. U64(0x694b775a694b775a), U64(0x161a121c161a121c),
  346. U64(0x0aba93e20aba93e2), U64(0xe52aa0c0e52aa0c0),
  347. U64(0x43e0223c43e0223c), U64(0x1d171b121d171b12),
  348. U64(0x0b0d090e0b0d090e), U64(0xadc78bf2adc78bf2),
  349. U64(0xb9a8b62db9a8b62d), U64(0xc8a91e14c8a91e14),
  350. U64(0x8519f1578519f157), U64(0x4c0775af4c0775af),
  351. U64(0xbbdd99eebbdd99ee), U64(0xfd607fa3fd607fa3),
  352. U64(0x9f2601f79f2601f7), U64(0xbcf5725cbcf5725c),
  353. U64(0xc53b6644c53b6644), U64(0x347efb5b347efb5b),
  354. U64(0x7629438b7629438b), U64(0xdcc623cbdcc623cb),
  355. U64(0x68fcedb668fcedb6), U64(0x63f1e4b863f1e4b8),
  356. U64(0xcadc31d7cadc31d7), U64(0x1085634210856342),
  357. U64(0x4022971340229713), U64(0x2011c6842011c684),
  358. U64(0x7d244a857d244a85), U64(0xf83dbbd2f83dbbd2),
  359. U64(0x1132f9ae1132f9ae), U64(0x6da129c76da129c7),
  360. U64(0x4b2f9e1d4b2f9e1d), U64(0xf330b2dcf330b2dc),
  361. U64(0xec52860dec52860d), U64(0xd0e3c177d0e3c177),
  362. U64(0x6c16b32b6c16b32b), U64(0x99b970a999b970a9),
  363. U64(0xfa489411fa489411), U64(0x2264e9472264e947),
  364. U64(0xc48cfca8c48cfca8), U64(0x1a3ff0a01a3ff0a0),
  365. U64(0xd82c7d56d82c7d56), U64(0xef903322ef903322),
  366. U64(0xc74e4987c74e4987), U64(0xc1d138d9c1d138d9),
  367. U64(0xfea2ca8cfea2ca8c), U64(0x360bd498360bd498),
  368. U64(0xcf81f5a6cf81f5a6), U64(0x28de7aa528de7aa5),
  369. U64(0x268eb7da268eb7da), U64(0xa4bfad3fa4bfad3f),
  370. U64(0xe49d3a2ce49d3a2c), U64(0x0d9278500d927850),
  371. U64(0x9bcc5f6a9bcc5f6a), U64(0x62467e5462467e54),
  372. U64(0xc2138df6c2138df6), U64(0xe8b8d890e8b8d890),
  373. U64(0x5ef7392e5ef7392e), U64(0xf5afc382f5afc382),
  374. U64(0xbe805d9fbe805d9f), U64(0x7c93d0697c93d069),
  375. U64(0xa92dd56fa92dd56f), U64(0xb31225cfb31225cf),
  376. U64(0x3b99acc83b99acc8), U64(0xa77d1810a77d1810),
  377. U64(0x6e639ce86e639ce8), U64(0x7bbb3bdb7bbb3bdb),
  378. U64(0x097826cd097826cd), U64(0xf418596ef418596e),
  379. U64(0x01b79aec01b79aec), U64(0xa89a4f83a89a4f83),
  380. U64(0x656e95e6656e95e6), U64(0x7ee6ffaa7ee6ffaa),
  381. U64(0x08cfbc2108cfbc21), U64(0xe6e815efe6e815ef),
  382. U64(0xd99be7bad99be7ba), U64(0xce366f4ace366f4a),
  383. U64(0xd4099fead4099fea), U64(0xd67cb029d67cb029),
  384. U64(0xafb2a431afb2a431), U64(0x31233f2a31233f2a),
  385. U64(0x3094a5c63094a5c6), U64(0xc066a235c066a235),
  386. U64(0x37bc4e7437bc4e74), U64(0xa6ca82fca6ca82fc),
  387. U64(0xb0d090e0b0d090e0), U64(0x15d8a73315d8a733),
  388. U64(0x4a9804f14a9804f1), U64(0xf7daec41f7daec41),
  389. U64(0x0e50cd7f0e50cd7f), U64(0x2ff691172ff69117),
  390. U64(0x8dd64d768dd64d76), U64(0x4db0ef434db0ef43),
  391. U64(0x544daacc544daacc), U64(0xdf0496e4df0496e4),
  392. U64(0xe3b5d19ee3b5d19e), U64(0x1b886a4c1b886a4c),
  393. U64(0xb81f2cc1b81f2cc1), U64(0x7f5165467f516546),
  394. U64(0x04ea5e9d04ea5e9d), U64(0x5d358c015d358c01),
  395. U64(0x737487fa737487fa), U64(0x2e410bfb2e410bfb),
  396. U64(0x5a1d67b35a1d67b3), U64(0x52d2db9252d2db92),
  397. U64(0x335610e9335610e9), U64(0x1347d66d1347d66d),
  398. U64(0x8c61d79a8c61d79a), U64(0x7a0ca1377a0ca137),
  399. U64(0x8e14f8598e14f859), U64(0x893c13eb893c13eb),
  400. U64(0xee27a9ceee27a9ce), U64(0x35c961b735c961b7),
  401. U64(0xede51ce1ede51ce1), U64(0x3cb1477a3cb1477a),
  402. U64(0x59dfd29c59dfd29c), U64(0x3f73f2553f73f255),
  403. U64(0x79ce141879ce1418), U64(0xbf37c773bf37c773),
  404. U64(0xeacdf753eacdf753), U64(0x5baafd5f5baafd5f),
  405. U64(0x146f3ddf146f3ddf), U64(0x86db447886db4478),
  406. U64(0x81f3afca81f3afca), U64(0x3ec468b93ec468b9),
  407. U64(0x2c3424382c342438), U64(0x5f40a3c25f40a3c2),
  408. U64(0x72c31d1672c31d16), U64(0x0c25e2bc0c25e2bc),
  409. U64(0x8b493c288b493c28), U64(0x41950dff41950dff),
  410. U64(0x7101a8397101a839), U64(0xdeb30c08deb30c08),
  411. U64(0x9ce4b4d89ce4b4d8), U64(0x90c1566490c15664),
  412. U64(0x6184cb7b6184cb7b), U64(0x70b632d570b632d5),
  413. U64(0x745c6c48745c6c48), U64(0x4257b8d04257b8d0)
  414. };
  415. static const u8 Td4[256] = {
  416. 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
  417. 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
  418. 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
  419. 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
  420. 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
  421. 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
  422. 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
  423. 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
  424. 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
  425. 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
  426. 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
  427. 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
  428. 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
  429. 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
  430. 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
  431. 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
  432. 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
  433. 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
  434. 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
  435. 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
  436. 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
  437. 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
  438. 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
  439. 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
  440. 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
  441. 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
  442. 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
  443. 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
  444. 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
  445. 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
  446. 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
  447. 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU
  448. };
  449. static const u32 rcon[] = {
  450. 0x00000001U, 0x00000002U, 0x00000004U, 0x00000008U,
  451. 0x00000010U, 0x00000020U, 0x00000040U, 0x00000080U,
  452. 0x0000001bU, 0x00000036U, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
  453. };
  454. /**
  455. * Expand the cipher key into the encryption key schedule.
  456. */
  457. int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
  458. AES_KEY *key)
  459. {
  460. u32 *rk;
  461. int i = 0;
  462. u32 temp;
  463. if (!userKey || !key)
  464. return -1;
  465. if (bits != 128 && bits != 192 && bits != 256)
  466. return -2;
  467. rk = key->rd_key;
  468. if (bits==128)
  469. key->rounds = 10;
  470. else if (bits==192)
  471. key->rounds = 12;
  472. else
  473. key->rounds = 14;
  474. rk[0] = GETU32(userKey );
  475. rk[1] = GETU32(userKey + 4);
  476. rk[2] = GETU32(userKey + 8);
  477. rk[3] = GETU32(userKey + 12);
  478. if (bits == 128) {
  479. while (1) {
  480. temp = rk[3];
  481. rk[4] = rk[0] ^
  482. ((u32)Te4[(temp >> 8) & 0xff] ) ^
  483. ((u32)Te4[(temp >> 16) & 0xff] << 8) ^
  484. ((u32)Te4[(temp >> 24) ] << 16) ^
  485. ((u32)Te4[(temp ) & 0xff] << 24) ^
  486. rcon[i];
  487. rk[5] = rk[1] ^ rk[4];
  488. rk[6] = rk[2] ^ rk[5];
  489. rk[7] = rk[3] ^ rk[6];
  490. if (++i == 10) {
  491. return 0;
  492. }
  493. rk += 4;
  494. }
  495. }
  496. rk[4] = GETU32(userKey + 16);
  497. rk[5] = GETU32(userKey + 20);
  498. if (bits == 192) {
  499. while (1) {
  500. temp = rk[ 5];
  501. rk[ 6] = rk[ 0] ^
  502. ((u32)Te4[(temp >> 8) & 0xff] ) ^
  503. ((u32)Te4[(temp >> 16) & 0xff] << 8) ^
  504. ((u32)Te4[(temp >> 24) ] << 16) ^
  505. ((u32)Te4[(temp ) & 0xff] << 24) ^
  506. rcon[i];
  507. rk[ 7] = rk[ 1] ^ rk[ 6];
  508. rk[ 8] = rk[ 2] ^ rk[ 7];
  509. rk[ 9] = rk[ 3] ^ rk[ 8];
  510. if (++i == 8) {
  511. return 0;
  512. }
  513. rk[10] = rk[ 4] ^ rk[ 9];
  514. rk[11] = rk[ 5] ^ rk[10];
  515. rk += 6;
  516. }
  517. }
  518. rk[6] = GETU32(userKey + 24);
  519. rk[7] = GETU32(userKey + 28);
  520. if (bits == 256) {
  521. while (1) {
  522. temp = rk[ 7];
  523. rk[ 8] = rk[ 0] ^
  524. ((u32)Te4[(temp >> 8) & 0xff] ) ^
  525. ((u32)Te4[(temp >> 16) & 0xff] << 8) ^
  526. ((u32)Te4[(temp >> 24) ] << 16) ^
  527. ((u32)Te4[(temp ) & 0xff] << 24) ^
  528. rcon[i];
  529. rk[ 9] = rk[ 1] ^ rk[ 8];
  530. rk[10] = rk[ 2] ^ rk[ 9];
  531. rk[11] = rk[ 3] ^ rk[10];
  532. if (++i == 7) {
  533. return 0;
  534. }
  535. temp = rk[11];
  536. rk[12] = rk[ 4] ^
  537. ((u32)Te4[(temp ) & 0xff] ) ^
  538. ((u32)Te4[(temp >> 8) & 0xff] << 8) ^
  539. ((u32)Te4[(temp >> 16) & 0xff] << 16) ^
  540. ((u32)Te4[(temp >> 24) ] << 24);
  541. rk[13] = rk[ 5] ^ rk[12];
  542. rk[14] = rk[ 6] ^ rk[13];
  543. rk[15] = rk[ 7] ^ rk[14];
  544. rk += 8;
  545. }
  546. }
  547. return 0;
  548. }
  549. /**
  550. * Expand the cipher key into the decryption key schedule.
  551. */
  552. int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
  553. AES_KEY *key)
  554. {
  555. u32 *rk;
  556. int i, j, status;
  557. u32 temp;
  558. /* first, start with an encryption schedule */
  559. status = AES_set_encrypt_key(userKey, bits, key);
  560. if (status < 0)
  561. return status;
  562. rk = key->rd_key;
  563. /* invert the order of the round keys: */
  564. for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) {
  565. temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
  566. temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
  567. temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
  568. temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
  569. }
  570. /* apply the inverse MixColumn transform to all round keys but the first and the last: */
  571. for (i = 1; i < (key->rounds); i++) {
  572. rk += 4;
  573. #if 1
  574. for (j = 0; j < 4; j++) {
  575. u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
  576. tp1 = rk[j];
  577. m = tp1 & 0x80808080;
  578. tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
  579. ((m - (m >> 7)) & 0x1b1b1b1b);
  580. m = tp2 & 0x80808080;
  581. tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
  582. ((m - (m >> 7)) & 0x1b1b1b1b);
  583. m = tp4 & 0x80808080;
  584. tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
  585. ((m - (m >> 7)) & 0x1b1b1b1b);
  586. tp9 = tp8 ^ tp1;
  587. tpb = tp9 ^ tp2;
  588. tpd = tp9 ^ tp4;
  589. tpe = tp8 ^ tp4 ^ tp2;
  590. #if defined(ROTATE)
  591. rk[j] = tpe ^ ROTATE(tpd,16) ^
  592. ROTATE(tp9,8) ^ ROTATE(tpb,24);
  593. #else
  594. rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
  595. (tp9 >> 24) ^ (tp9 << 8) ^
  596. (tpb >> 8) ^ (tpb << 24);
  597. #endif
  598. }
  599. #else
  600. rk[0] =
  601. Td0[Te2[(rk[0] ) & 0xff] & 0xff] ^
  602. Td1[Te2[(rk[0] >> 8) & 0xff] & 0xff] ^
  603. Td2[Te2[(rk[0] >> 16) & 0xff] & 0xff] ^
  604. Td3[Te2[(rk[0] >> 24) ] & 0xff];
  605. rk[1] =
  606. Td0[Te2[(rk[1] ) & 0xff] & 0xff] ^
  607. Td1[Te2[(rk[1] >> 8) & 0xff] & 0xff] ^
  608. Td2[Te2[(rk[1] >> 16) & 0xff] & 0xff] ^
  609. Td3[Te2[(rk[1] >> 24) ] & 0xff];
  610. rk[2] =
  611. Td0[Te2[(rk[2] ) & 0xff] & 0xff] ^
  612. Td1[Te2[(rk[2] >> 8) & 0xff] & 0xff] ^
  613. Td2[Te2[(rk[2] >> 16) & 0xff] & 0xff] ^
  614. Td3[Te2[(rk[2] >> 24) ] & 0xff];
  615. rk[3] =
  616. Td0[Te2[(rk[3] ) & 0xff] & 0xff] ^
  617. Td1[Te2[(rk[3] >> 8) & 0xff] & 0xff] ^
  618. Td2[Te2[(rk[3] >> 16) & 0xff] & 0xff] ^
  619. Td3[Te2[(rk[3] >> 24) ] & 0xff];
  620. #endif
  621. }
  622. return 0;
  623. }
  624. /*
  625. * Encrypt a single block
  626. * in and out can overlap
  627. */
  628. void AES_encrypt(const unsigned char *in, unsigned char *out,
  629. const AES_KEY *key)
  630. {
  631. const u32 *rk;
  632. u32 s0, s1, s2, s3, t[4];
  633. int r;
  634. assert(in && out && key);
  635. rk = key->rd_key;
  636. /*
  637. * map byte array block to cipher state
  638. * and add initial round key:
  639. */
  640. s0 = GETU32(in ) ^ rk[0];
  641. s1 = GETU32(in + 4) ^ rk[1];
  642. s2 = GETU32(in + 8) ^ rk[2];
  643. s3 = GETU32(in + 12) ^ rk[3];
  644. #if defined(AES_COMPACT_IN_OUTER_ROUNDS)
  645. prefetch256(Te4);
  646. t[0] = (u32)Te4[(s0 ) & 0xff] ^
  647. (u32)Te4[(s1 >> 8) & 0xff] << 8 ^
  648. (u32)Te4[(s2 >> 16) & 0xff] << 16 ^
  649. (u32)Te4[(s3 >> 24) ] << 24;
  650. t[1] = (u32)Te4[(s1 ) & 0xff] ^
  651. (u32)Te4[(s2 >> 8) & 0xff] << 8 ^
  652. (u32)Te4[(s3 >> 16) & 0xff] << 16 ^
  653. (u32)Te4[(s0 >> 24) ] << 24;
  654. t[2] = (u32)Te4[(s2 ) & 0xff] ^
  655. (u32)Te4[(s3 >> 8) & 0xff] << 8 ^
  656. (u32)Te4[(s0 >> 16) & 0xff] << 16 ^
  657. (u32)Te4[(s1 >> 24) ] << 24;
  658. t[3] = (u32)Te4[(s3 ) & 0xff] ^
  659. (u32)Te4[(s0 >> 8) & 0xff] << 8 ^
  660. (u32)Te4[(s1 >> 16) & 0xff] << 16 ^
  661. (u32)Te4[(s2 >> 24) ] << 24;
  662. /* now do the linear transform using words */
  663. { int i;
  664. u32 r0, r1, r2;
  665. for (i = 0; i < 4; i++) {
  666. r0 = t[i];
  667. r1 = r0 & 0x80808080;
  668. r2 = ((r0 & 0x7f7f7f7f) << 1) ^
  669. ((r1 - (r1 >> 7)) & 0x1b1b1b1b);
  670. #if defined(ROTATE)
  671. t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^
  672. ROTATE(r0,16) ^ ROTATE(r0,8);
  673. #else
  674. t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^
  675. (r0 << 16) ^ (r0 >> 16) ^
  676. (r0 << 8) ^ (r0 >> 24);
  677. #endif
  678. t[i] ^= rk[4+i];
  679. }
  680. }
  681. #else
  682. t[0] = Te0[(s0 ) & 0xff] ^
  683. Te1[(s1 >> 8) & 0xff] ^
  684. Te2[(s2 >> 16) & 0xff] ^
  685. Te3[(s3 >> 24) ] ^
  686. rk[4];
  687. t[1] = Te0[(s1 ) & 0xff] ^
  688. Te1[(s2 >> 8) & 0xff] ^
  689. Te2[(s3 >> 16) & 0xff] ^
  690. Te3[(s0 >> 24) ] ^
  691. rk[5];
  692. t[2] = Te0[(s2 ) & 0xff] ^
  693. Te1[(s3 >> 8) & 0xff] ^
  694. Te2[(s0 >> 16) & 0xff] ^
  695. Te3[(s1 >> 24) ] ^
  696. rk[6];
  697. t[3] = Te0[(s3 ) & 0xff] ^
  698. Te1[(s0 >> 8) & 0xff] ^
  699. Te2[(s1 >> 16) & 0xff] ^
  700. Te3[(s2 >> 24) ] ^
  701. rk[7];
  702. #endif
  703. s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
  704. /*
  705. * Nr - 2 full rounds:
  706. */
  707. for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) {
  708. #if defined(AES_COMPACT_IN_INNER_ROUNDS)
  709. t[0] = (u32)Te4[(s0 ) & 0xff] ^
  710. (u32)Te4[(s1 >> 8) & 0xff] << 8 ^
  711. (u32)Te4[(s2 >> 16) & 0xff] << 16 ^
  712. (u32)Te4[(s3 >> 24) ] << 24;
  713. t[1] = (u32)Te4[(s1 ) & 0xff] ^
  714. (u32)Te4[(s2 >> 8) & 0xff] << 8 ^
  715. (u32)Te4[(s3 >> 16) & 0xff] << 16 ^
  716. (u32)Te4[(s0 >> 24) ] << 24;
  717. t[2] = (u32)Te4[(s2 ) & 0xff] ^
  718. (u32)Te4[(s3 >> 8) & 0xff] << 8 ^
  719. (u32)Te4[(s0 >> 16) & 0xff] << 16 ^
  720. (u32)Te4[(s1 >> 24) ] << 24;
  721. t[3] = (u32)Te4[(s3 ) & 0xff] ^
  722. (u32)Te4[(s0 >> 8) & 0xff] << 8 ^
  723. (u32)Te4[(s1 >> 16) & 0xff] << 16 ^
  724. (u32)Te4[(s2 >> 24) ] << 24;
  725. /* now do the linear transform using words */
  726. {
  727. int i;
  728. u32 r0, r1, r2;
  729. for (i = 0; i < 4; i++) {
  730. r0 = t[i];
  731. r1 = r0 & 0x80808080;
  732. r2 = ((r0 & 0x7f7f7f7f) << 1) ^
  733. ((r1 - (r1 >> 7)) & 0x1b1b1b1b);
  734. #if defined(ROTATE)
  735. t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^
  736. ROTATE(r0,16) ^ ROTATE(r0,8);
  737. #else
  738. t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^
  739. (r0 << 16) ^ (r0 >> 16) ^
  740. (r0 << 8) ^ (r0 >> 24);
  741. #endif
  742. t[i] ^= rk[i];
  743. }
  744. }
  745. #else
  746. t[0] = Te0[(s0 ) & 0xff] ^
  747. Te1[(s1 >> 8) & 0xff] ^
  748. Te2[(s2 >> 16) & 0xff] ^
  749. Te3[(s3 >> 24) ] ^
  750. rk[0];
  751. t[1] = Te0[(s1 ) & 0xff] ^
  752. Te1[(s2 >> 8) & 0xff] ^
  753. Te2[(s3 >> 16) & 0xff] ^
  754. Te3[(s0 >> 24) ] ^
  755. rk[1];
  756. t[2] = Te0[(s2 ) & 0xff] ^
  757. Te1[(s3 >> 8) & 0xff] ^
  758. Te2[(s0 >> 16) & 0xff] ^
  759. Te3[(s1 >> 24) ] ^
  760. rk[2];
  761. t[3] = Te0[(s3 ) & 0xff] ^
  762. Te1[(s0 >> 8) & 0xff] ^
  763. Te2[(s1 >> 16) & 0xff] ^
  764. Te3[(s2 >> 24) ] ^
  765. rk[3];
  766. #endif
  767. s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
  768. }
  769. /*
  770. * apply last round and
  771. * map cipher state to byte array block:
  772. */
  773. #if defined(AES_COMPACT_IN_OUTER_ROUNDS)
  774. prefetch256(Te4);
  775. *(u32*)(out+0) =
  776. (u32)Te4[(s0 ) & 0xff] ^
  777. (u32)Te4[(s1 >> 8) & 0xff] << 8 ^
  778. (u32)Te4[(s2 >> 16) & 0xff] << 16 ^
  779. (u32)Te4[(s3 >> 24) ] << 24 ^
  780. rk[0];
  781. *(u32*)(out+4) =
  782. (u32)Te4[(s1 ) & 0xff] ^
  783. (u32)Te4[(s2 >> 8) & 0xff] << 8 ^
  784. (u32)Te4[(s3 >> 16) & 0xff] << 16 ^
  785. (u32)Te4[(s0 >> 24) ] << 24 ^
  786. rk[1];
  787. *(u32*)(out+8) =
  788. (u32)Te4[(s2 ) & 0xff] ^
  789. (u32)Te4[(s3 >> 8) & 0xff] << 8 ^
  790. (u32)Te4[(s0 >> 16) & 0xff] << 16 ^
  791. (u32)Te4[(s1 >> 24) ] << 24 ^
  792. rk[2];
  793. *(u32*)(out+12) =
  794. (u32)Te4[(s3 ) & 0xff] ^
  795. (u32)Te4[(s0 >> 8) & 0xff] << 8 ^
  796. (u32)Te4[(s1 >> 16) & 0xff] << 16 ^
  797. (u32)Te4[(s2 >> 24) ] << 24 ^
  798. rk[3];
  799. #else
  800. *(u32*)(out+0) =
  801. (Te2[(s0 ) & 0xff] & 0x000000ffU) ^
  802. (Te3[(s1 >> 8) & 0xff] & 0x0000ff00U) ^
  803. (Te0[(s2 >> 16) & 0xff] & 0x00ff0000U) ^
  804. (Te1[(s3 >> 24) ] & 0xff000000U) ^
  805. rk[0];
  806. *(u32*)(out+4) =
  807. (Te2[(s1 ) & 0xff] & 0x000000ffU) ^
  808. (Te3[(s2 >> 8) & 0xff] & 0x0000ff00U) ^
  809. (Te0[(s3 >> 16) & 0xff] & 0x00ff0000U) ^
  810. (Te1[(s0 >> 24) ] & 0xff000000U) ^
  811. rk[1];
  812. *(u32*)(out+8) =
  813. (Te2[(s2 ) & 0xff] & 0x000000ffU) ^
  814. (Te3[(s3 >> 8) & 0xff] & 0x0000ff00U) ^
  815. (Te0[(s0 >> 16) & 0xff] & 0x00ff0000U) ^
  816. (Te1[(s1 >> 24) ] & 0xff000000U) ^
  817. rk[2];
  818. *(u32*)(out+12) =
  819. (Te2[(s3 ) & 0xff] & 0x000000ffU) ^
  820. (Te3[(s0 >> 8) & 0xff] & 0x0000ff00U) ^
  821. (Te0[(s1 >> 16) & 0xff] & 0x00ff0000U) ^
  822. (Te1[(s2 >> 24) ] & 0xff000000U) ^
  823. rk[3];
  824. #endif
  825. }
  826. /*
  827. * Decrypt a single block
  828. * in and out can overlap
  829. */
  830. void AES_decrypt(const unsigned char *in, unsigned char *out,
  831. const AES_KEY *key)
  832. {
  833. const u32 *rk;
  834. u32 s0, s1, s2, s3, t[4];
  835. int r;
  836. assert(in && out && key);
  837. rk = key->rd_key;
  838. /*
  839. * map byte array block to cipher state
  840. * and add initial round key:
  841. */
  842. s0 = GETU32(in ) ^ rk[0];
  843. s1 = GETU32(in + 4) ^ rk[1];
  844. s2 = GETU32(in + 8) ^ rk[2];
  845. s3 = GETU32(in + 12) ^ rk[3];
  846. #if defined(AES_COMPACT_IN_OUTER_ROUNDS)
  847. prefetch256(Td4);
  848. t[0] = (u32)Td4[(s0 ) & 0xff] ^
  849. (u32)Td4[(s3 >> 8) & 0xff] << 8 ^
  850. (u32)Td4[(s2 >> 16) & 0xff] << 16 ^
  851. (u32)Td4[(s1 >> 24) ] << 24;
  852. t[1] = (u32)Td4[(s1 ) & 0xff] ^
  853. (u32)Td4[(s0 >> 8) & 0xff] << 8 ^
  854. (u32)Td4[(s3 >> 16) & 0xff] << 16 ^
  855. (u32)Td4[(s2 >> 24) ] << 24;
  856. t[2] = (u32)Td4[(s2 ) & 0xff] ^
  857. (u32)Td4[(s1 >> 8) & 0xff] << 8 ^
  858. (u32)Td4[(s0 >> 16) & 0xff] << 16 ^
  859. (u32)Td4[(s3 >> 24) ] << 24;
  860. t[3] = (u32)Td4[(s3 ) & 0xff] ^
  861. (u32)Td4[(s2 >> 8) & 0xff] << 8 ^
  862. (u32)Td4[(s1 >> 16) & 0xff] << 16 ^
  863. (u32)Td4[(s0 >> 24) ] << 24;
  864. /* now do the linear transform using words */
  865. {
  866. int i;
  867. u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
  868. for (i = 0; i < 4; i++) {
  869. tp1 = t[i];
  870. m = tp1 & 0x80808080;
  871. tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
  872. ((m - (m >> 7)) & 0x1b1b1b1b);
  873. m = tp2 & 0x80808080;
  874. tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
  875. ((m - (m >> 7)) & 0x1b1b1b1b);
  876. m = tp4 & 0x80808080;
  877. tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
  878. ((m - (m >> 7)) & 0x1b1b1b1b);
  879. tp9 = tp8 ^ tp1;
  880. tpb = tp9 ^ tp2;
  881. tpd = tp9 ^ tp4;
  882. tpe = tp8 ^ tp4 ^ tp2;
  883. #if defined(ROTATE)
  884. t[i] = tpe ^ ROTATE(tpd,16) ^
  885. ROTATE(tp9,8) ^ ROTATE(tpb,24);
  886. #else
  887. t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
  888. (tp9 >> 24) ^ (tp9 << 8) ^
  889. (tpb >> 8) ^ (tpb << 24);
  890. #endif
  891. t[i] ^= rk[4+i];
  892. }
  893. }
  894. #else
  895. t[0] = Td0[(s0 ) & 0xff] ^
  896. Td1[(s3 >> 8) & 0xff] ^
  897. Td2[(s2 >> 16) & 0xff] ^
  898. Td3[(s1 >> 24) ] ^
  899. rk[4];
  900. t[1] = Td0[(s1 ) & 0xff] ^
  901. Td1[(s0 >> 8) & 0xff] ^
  902. Td2[(s3 >> 16) & 0xff] ^
  903. Td3[(s2 >> 24) ] ^
  904. rk[5];
  905. t[2] = Td0[(s2 ) & 0xff] ^
  906. Td1[(s1 >> 8) & 0xff] ^
  907. Td2[(s0 >> 16) & 0xff] ^
  908. Td3[(s3 >> 24) ] ^
  909. rk[6];
  910. t[3] = Td0[(s3 ) & 0xff] ^
  911. Td1[(s2 >> 8) & 0xff] ^
  912. Td2[(s1 >> 16) & 0xff] ^
  913. Td3[(s0 >> 24) ] ^
  914. rk[7];
  915. #endif
  916. s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
  917. /*
  918. * Nr - 2 full rounds:
  919. */
  920. for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) {
  921. #if defined(AES_COMPACT_IN_INNER_ROUNDS)
  922. t[0] = (u32)Td4[(s0 ) & 0xff] ^
  923. (u32)Td4[(s3 >> 8) & 0xff] << 8 ^
  924. (u32)Td4[(s2 >> 16) & 0xff] << 16 ^
  925. (u32)Td4[(s1 >> 24) ] << 24;
  926. t[1] = (u32)Td4[(s1 ) & 0xff] ^
  927. (u32)Td4[(s0 >> 8) & 0xff] << 8 ^
  928. (u32)Td4[(s3 >> 16) & 0xff] << 16 ^
  929. (u32)Td4[(s2 >> 24) ] << 24;
  930. t[2] = (u32)Td4[(s2 ) & 0xff] ^
  931. (u32)Td4[(s1 >> 8) & 0xff] << 8 ^
  932. (u32)Td4[(s0 >> 16) & 0xff] << 16 ^
  933. (u32)Td4[(s3 >> 24) ] << 24;
  934. t[3] = (u32)Td4[(s3 ) & 0xff] ^
  935. (u32)Td4[(s2 >> 8) & 0xff] << 8 ^
  936. (u32)Td4[(s1 >> 16) & 0xff] << 16 ^
  937. (u32)Td4[(s0 >> 24) ] << 24;
  938. /* now do the linear transform using words */
  939. {
  940. int i;
  941. u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
  942. for (i = 0; i < 4; i++) {
  943. tp1 = t[i];
  944. m = tp1 & 0x80808080;
  945. tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
  946. ((m - (m >> 7)) & 0x1b1b1b1b);
  947. m = tp2 & 0x80808080;
  948. tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
  949. ((m - (m >> 7)) & 0x1b1b1b1b);
  950. m = tp4 & 0x80808080;
  951. tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
  952. ((m - (m >> 7)) & 0x1b1b1b1b);
  953. tp9 = tp8 ^ tp1;
  954. tpb = tp9 ^ tp2;
  955. tpd = tp9 ^ tp4;
  956. tpe = tp8 ^ tp4 ^ tp2;
  957. #if defined(ROTATE)
  958. t[i] = tpe ^ ROTATE(tpd,16) ^
  959. ROTATE(tp9,8) ^ ROTATE(tpb,24);
  960. #else
  961. t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
  962. (tp9 >> 24) ^ (tp9 << 8) ^
  963. (tpb >> 8) ^ (tpb << 24);
  964. #endif
  965. t[i] ^= rk[i];
  966. }
  967. }
  968. #else
  969. t[0] = Td0[(s0 ) & 0xff] ^
  970. Td1[(s3 >> 8) & 0xff] ^
  971. Td2[(s2 >> 16) & 0xff] ^
  972. Td3[(s1 >> 24) ] ^
  973. rk[0];
  974. t[1] = Td0[(s1 ) & 0xff] ^
  975. Td1[(s0 >> 8) & 0xff] ^
  976. Td2[(s3 >> 16) & 0xff] ^
  977. Td3[(s2 >> 24) ] ^
  978. rk[1];
  979. t[2] = Td0[(s2 ) & 0xff] ^
  980. Td1[(s1 >> 8) & 0xff] ^
  981. Td2[(s0 >> 16) & 0xff] ^
  982. Td3[(s3 >> 24) ] ^
  983. rk[2];
  984. t[3] = Td0[(s3 ) & 0xff] ^
  985. Td1[(s2 >> 8) & 0xff] ^
  986. Td2[(s1 >> 16) & 0xff] ^
  987. Td3[(s0 >> 24) ] ^
  988. rk[3];
  989. #endif
  990. s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3];
  991. }
  992. /*
  993. * apply last round and
  994. * map cipher state to byte array block:
  995. */
  996. prefetch256(Td4);
  997. *(u32*)(out+0) =
  998. ((u32)Td4[(s0 ) & 0xff]) ^
  999. ((u32)Td4[(s3 >> 8) & 0xff] << 8) ^
  1000. ((u32)Td4[(s2 >> 16) & 0xff] << 16) ^
  1001. ((u32)Td4[(s1 >> 24) ] << 24) ^
  1002. rk[0];
  1003. *(u32*)(out+4) =
  1004. ((u32)Td4[(s1 ) & 0xff]) ^
  1005. ((u32)Td4[(s0 >> 8) & 0xff] << 8) ^
  1006. ((u32)Td4[(s3 >> 16) & 0xff] << 16) ^
  1007. ((u32)Td4[(s2 >> 24) ] << 24) ^
  1008. rk[1];
  1009. *(u32*)(out+8) =
  1010. ((u32)Td4[(s2 ) & 0xff]) ^
  1011. ((u32)Td4[(s1 >> 8) & 0xff] << 8) ^
  1012. ((u32)Td4[(s0 >> 16) & 0xff] << 16) ^
  1013. ((u32)Td4[(s3 >> 24) ] << 24) ^
  1014. rk[2];
  1015. *(u32*)(out+12) =
  1016. ((u32)Td4[(s3 ) & 0xff]) ^
  1017. ((u32)Td4[(s2 >> 8) & 0xff] << 8) ^
  1018. ((u32)Td4[(s1 >> 16) & 0xff] << 16) ^
  1019. ((u32)Td4[(s0 >> 24) ] << 24) ^
  1020. rk[3];
  1021. }