123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616 |
- /*
- * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include "internal/cryptlib.h"
- #include "bn_lcl.h"
- static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
- int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
- {
- BIGNUM *a, *b, *t;
- int ret = 0;
- bn_check_top(in_a);
- bn_check_top(in_b);
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- if (b == NULL)
- goto err;
- if (BN_copy(a, in_a) == NULL)
- goto err;
- if (BN_copy(b, in_b) == NULL)
- goto err;
- a->neg = 0;
- b->neg = 0;
- if (BN_cmp(a, b) < 0) {
- t = a;
- a = b;
- b = t;
- }
- t = euclid(a, b);
- if (t == NULL)
- goto err;
- if (BN_copy(r, t) == NULL)
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- bn_check_top(r);
- return ret;
- }
- static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
- {
- BIGNUM *t;
- int shifts = 0;
- bn_check_top(a);
- bn_check_top(b);
- /* 0 <= b <= a */
- while (!BN_is_zero(b)) {
- /* 0 < b <= a */
- if (BN_is_odd(a)) {
- if (BN_is_odd(b)) {
- if (!BN_sub(a, a, b))
- goto err;
- if (!BN_rshift1(a, a))
- goto err;
- if (BN_cmp(a, b) < 0) {
- t = a;
- a = b;
- b = t;
- }
- } else { /* a odd - b even */
- if (!BN_rshift1(b, b))
- goto err;
- if (BN_cmp(a, b) < 0) {
- t = a;
- a = b;
- b = t;
- }
- }
- } else { /* a is even */
- if (BN_is_odd(b)) {
- if (!BN_rshift1(a, a))
- goto err;
- if (BN_cmp(a, b) < 0) {
- t = a;
- a = b;
- b = t;
- }
- } else { /* a even - b even */
- if (!BN_rshift1(a, a))
- goto err;
- if (!BN_rshift1(b, b))
- goto err;
- shifts++;
- }
- }
- /* 0 <= b <= a */
- }
- if (shifts) {
- if (!BN_lshift(a, a, shifts))
- goto err;
- }
- bn_check_top(a);
- return a;
- err:
- return NULL;
- }
- /* solves ax == 1 (mod n) */
- static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n,
- BN_CTX *ctx);
- BIGNUM *BN_mod_inverse(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
- {
- BIGNUM *rv;
- int noinv;
- rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
- if (noinv)
- BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
- return rv;
- }
- BIGNUM *int_bn_mod_inverse(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
- int *pnoinv)
- {
- BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
- BIGNUM *ret = NULL;
- int sign;
- if (pnoinv)
- *pnoinv = 0;
- if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
- || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
- return BN_mod_inverse_no_branch(in, a, n, ctx);
- }
- bn_check_top(a);
- bn_check_top(n);
- BN_CTX_start(ctx);
- A = BN_CTX_get(ctx);
- B = BN_CTX_get(ctx);
- X = BN_CTX_get(ctx);
- D = BN_CTX_get(ctx);
- M = BN_CTX_get(ctx);
- Y = BN_CTX_get(ctx);
- T = BN_CTX_get(ctx);
- if (T == NULL)
- goto err;
- if (in == NULL)
- R = BN_new();
- else
- R = in;
- if (R == NULL)
- goto err;
- BN_one(X);
- BN_zero(Y);
- if (BN_copy(B, a) == NULL)
- goto err;
- if (BN_copy(A, n) == NULL)
- goto err;
- A->neg = 0;
- if (B->neg || (BN_ucmp(B, A) >= 0)) {
- if (!BN_nnmod(B, B, A, ctx))
- goto err;
- }
- sign = -1;
- /*-
- * From B = a mod |n|, A = |n| it follows that
- *
- * 0 <= B < A,
- * -sign*X*a == B (mod |n|),
- * sign*Y*a == A (mod |n|).
- */
- if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
- /*
- * Binary inversion algorithm; requires odd modulus. This is faster
- * than the general algorithm if the modulus is sufficiently small
- * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
- * systems)
- */
- int shift;
- while (!BN_is_zero(B)) {
- /*-
- * 0 < B < |n|,
- * 0 < A <= |n|,
- * (1) -sign*X*a == B (mod |n|),
- * (2) sign*Y*a == A (mod |n|)
- */
- /*
- * Now divide B by the maximum possible power of two in the
- * integers, and divide X by the same value mod |n|. When we're
- * done, (1) still holds.
- */
- shift = 0;
- while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
- shift++;
- if (BN_is_odd(X)) {
- if (!BN_uadd(X, X, n))
- goto err;
- }
- /*
- * now X is even, so we can easily divide it by two
- */
- if (!BN_rshift1(X, X))
- goto err;
- }
- if (shift > 0) {
- if (!BN_rshift(B, B, shift))
- goto err;
- }
- /*
- * Same for A and Y. Afterwards, (2) still holds.
- */
- shift = 0;
- while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
- shift++;
- if (BN_is_odd(Y)) {
- if (!BN_uadd(Y, Y, n))
- goto err;
- }
- /* now Y is even */
- if (!BN_rshift1(Y, Y))
- goto err;
- }
- if (shift > 0) {
- if (!BN_rshift(A, A, shift))
- goto err;
- }
- /*-
- * We still have (1) and (2).
- * Both A and B are odd.
- * The following computations ensure that
- *
- * 0 <= B < |n|,
- * 0 < A < |n|,
- * (1) -sign*X*a == B (mod |n|),
- * (2) sign*Y*a == A (mod |n|),
- *
- * and that either A or B is even in the next iteration.
- */
- if (BN_ucmp(B, A) >= 0) {
- /* -sign*(X + Y)*a == B - A (mod |n|) */
- if (!BN_uadd(X, X, Y))
- goto err;
- /*
- * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
- * actually makes the algorithm slower
- */
- if (!BN_usub(B, B, A))
- goto err;
- } else {
- /* sign*(X + Y)*a == A - B (mod |n|) */
- if (!BN_uadd(Y, Y, X))
- goto err;
- /*
- * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
- */
- if (!BN_usub(A, A, B))
- goto err;
- }
- }
- } else {
- /* general inversion algorithm */
- while (!BN_is_zero(B)) {
- BIGNUM *tmp;
- /*-
- * 0 < B < A,
- * (*) -sign*X*a == B (mod |n|),
- * sign*Y*a == A (mod |n|)
- */
- /* (D, M) := (A/B, A%B) ... */
- if (BN_num_bits(A) == BN_num_bits(B)) {
- if (!BN_one(D))
- goto err;
- if (!BN_sub(M, A, B))
- goto err;
- } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
- /* A/B is 1, 2, or 3 */
- if (!BN_lshift1(T, B))
- goto err;
- if (BN_ucmp(A, T) < 0) {
- /* A < 2*B, so D=1 */
- if (!BN_one(D))
- goto err;
- if (!BN_sub(M, A, B))
- goto err;
- } else {
- /* A >= 2*B, so D=2 or D=3 */
- if (!BN_sub(M, A, T))
- goto err;
- if (!BN_add(D, T, B))
- goto err; /* use D (:= 3*B) as temp */
- if (BN_ucmp(A, D) < 0) {
- /* A < 3*B, so D=2 */
- if (!BN_set_word(D, 2))
- goto err;
- /*
- * M (= A - 2*B) already has the correct value
- */
- } else {
- /* only D=3 remains */
- if (!BN_set_word(D, 3))
- goto err;
- /*
- * currently M = A - 2*B, but we need M = A - 3*B
- */
- if (!BN_sub(M, M, B))
- goto err;
- }
- }
- } else {
- if (!BN_div(D, M, A, B, ctx))
- goto err;
- }
- /*-
- * Now
- * A = D*B + M;
- * thus we have
- * (**) sign*Y*a == D*B + M (mod |n|).
- */
- tmp = A; /* keep the BIGNUM object, the value does not matter */
- /* (A, B) := (B, A mod B) ... */
- A = B;
- B = M;
- /* ... so we have 0 <= B < A again */
- /*-
- * Since the former M is now B and the former B is now A,
- * (**) translates into
- * sign*Y*a == D*A + B (mod |n|),
- * i.e.
- * sign*Y*a - D*A == B (mod |n|).
- * Similarly, (*) translates into
- * -sign*X*a == A (mod |n|).
- *
- * Thus,
- * sign*Y*a + D*sign*X*a == B (mod |n|),
- * i.e.
- * sign*(Y + D*X)*a == B (mod |n|).
- *
- * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
- * -sign*X*a == B (mod |n|),
- * sign*Y*a == A (mod |n|).
- * Note that X and Y stay non-negative all the time.
- */
- /*
- * most of the time D is very small, so we can optimize tmp := D*X+Y
- */
- if (BN_is_one(D)) {
- if (!BN_add(tmp, X, Y))
- goto err;
- } else {
- if (BN_is_word(D, 2)) {
- if (!BN_lshift1(tmp, X))
- goto err;
- } else if (BN_is_word(D, 4)) {
- if (!BN_lshift(tmp, X, 2))
- goto err;
- } else if (D->top == 1) {
- if (!BN_copy(tmp, X))
- goto err;
- if (!BN_mul_word(tmp, D->d[0]))
- goto err;
- } else {
- if (!BN_mul(tmp, D, X, ctx))
- goto err;
- }
- if (!BN_add(tmp, tmp, Y))
- goto err;
- }
- M = Y; /* keep the BIGNUM object, the value does not matter */
- Y = X;
- X = tmp;
- sign = -sign;
- }
- }
- /*-
- * The while loop (Euclid's algorithm) ends when
- * A == gcd(a,n);
- * we have
- * sign*Y*a == A (mod |n|),
- * where Y is non-negative.
- */
- if (sign < 0) {
- if (!BN_sub(Y, n, Y))
- goto err;
- }
- /* Now Y*a == A (mod |n|). */
- if (BN_is_one(A)) {
- /* Y*a == 1 (mod |n|) */
- if (!Y->neg && BN_ucmp(Y, n) < 0) {
- if (!BN_copy(R, Y))
- goto err;
- } else {
- if (!BN_nnmod(R, Y, n, ctx))
- goto err;
- }
- } else {
- if (pnoinv)
- *pnoinv = 1;
- goto err;
- }
- ret = R;
- err:
- if ((ret == NULL) && (in == NULL))
- BN_free(R);
- BN_CTX_end(ctx);
- bn_check_top(ret);
- return ret;
- }
- /*
- * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
- * not contain branches that may leak sensitive information.
- */
- static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n,
- BN_CTX *ctx)
- {
- BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
- BIGNUM *ret = NULL;
- int sign;
- bn_check_top(a);
- bn_check_top(n);
- BN_CTX_start(ctx);
- A = BN_CTX_get(ctx);
- B = BN_CTX_get(ctx);
- X = BN_CTX_get(ctx);
- D = BN_CTX_get(ctx);
- M = BN_CTX_get(ctx);
- Y = BN_CTX_get(ctx);
- T = BN_CTX_get(ctx);
- if (T == NULL)
- goto err;
- if (in == NULL)
- R = BN_new();
- else
- R = in;
- if (R == NULL)
- goto err;
- BN_one(X);
- BN_zero(Y);
- if (BN_copy(B, a) == NULL)
- goto err;
- if (BN_copy(A, n) == NULL)
- goto err;
- A->neg = 0;
- if (B->neg || (BN_ucmp(B, A) >= 0)) {
- /*
- * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
- * BN_div_no_branch will be called eventually.
- */
- {
- BIGNUM local_B;
- bn_init(&local_B);
- BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
- if (!BN_nnmod(B, &local_B, A, ctx))
- goto err;
- /* Ensure local_B goes out of scope before any further use of B */
- }
- }
- sign = -1;
- /*-
- * From B = a mod |n|, A = |n| it follows that
- *
- * 0 <= B < A,
- * -sign*X*a == B (mod |n|),
- * sign*Y*a == A (mod |n|).
- */
- while (!BN_is_zero(B)) {
- BIGNUM *tmp;
- /*-
- * 0 < B < A,
- * (*) -sign*X*a == B (mod |n|),
- * sign*Y*a == A (mod |n|)
- */
- /*
- * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
- * BN_div_no_branch will be called eventually.
- */
- {
- BIGNUM local_A;
- bn_init(&local_A);
- BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
- /* (D, M) := (A/B, A%B) ... */
- if (!BN_div(D, M, &local_A, B, ctx))
- goto err;
- /* Ensure local_A goes out of scope before any further use of A */
- }
- /*-
- * Now
- * A = D*B + M;
- * thus we have
- * (**) sign*Y*a == D*B + M (mod |n|).
- */
- tmp = A; /* keep the BIGNUM object, the value does not
- * matter */
- /* (A, B) := (B, A mod B) ... */
- A = B;
- B = M;
- /* ... so we have 0 <= B < A again */
- /*-
- * Since the former M is now B and the former B is now A,
- * (**) translates into
- * sign*Y*a == D*A + B (mod |n|),
- * i.e.
- * sign*Y*a - D*A == B (mod |n|).
- * Similarly, (*) translates into
- * -sign*X*a == A (mod |n|).
- *
- * Thus,
- * sign*Y*a + D*sign*X*a == B (mod |n|),
- * i.e.
- * sign*(Y + D*X)*a == B (mod |n|).
- *
- * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
- * -sign*X*a == B (mod |n|),
- * sign*Y*a == A (mod |n|).
- * Note that X and Y stay non-negative all the time.
- */
- if (!BN_mul(tmp, D, X, ctx))
- goto err;
- if (!BN_add(tmp, tmp, Y))
- goto err;
- M = Y; /* keep the BIGNUM object, the value does not
- * matter */
- Y = X;
- X = tmp;
- sign = -sign;
- }
- /*-
- * The while loop (Euclid's algorithm) ends when
- * A == gcd(a,n);
- * we have
- * sign*Y*a == A (mod |n|),
- * where Y is non-negative.
- */
- if (sign < 0) {
- if (!BN_sub(Y, n, Y))
- goto err;
- }
- /* Now Y*a == A (mod |n|). */
- if (BN_is_one(A)) {
- /* Y*a == 1 (mod |n|) */
- if (!Y->neg && BN_ucmp(Y, n) < 0) {
- if (!BN_copy(R, Y))
- goto err;
- } else {
- if (!BN_nnmod(R, Y, n, ctx))
- goto err;
- }
- } else {
- BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
- goto err;
- }
- ret = R;
- err:
- if ((ret == NULL) && (in == NULL))
- BN_free(R);
- BN_CTX_end(ctx);
- bn_check_top(ret);
- return ret;
- }
|