EVP_KDF-SCRYPT.pod 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. =pod
  2. =head1 NAME
  3. EVP_KDF-SCRYPT - The scrypt EVP_KDF implementation
  4. =head1 DESCRIPTION
  5. Support for computing the B<scrypt> password-based KDF through the B<EVP_KDF>
  6. API.
  7. The EVP_KDF-SCRYPT algorithm implements the scrypt password-based key
  8. derivation function, as described in RFC 7914. It is memory-hard in the sense
  9. that it deliberately requires a significant amount of RAM for efficient
  10. computation. The intention of this is to render brute forcing of passwords on
  11. systems that lack large amounts of main memory (such as GPUs or ASICs)
  12. computationally infeasible.
  13. scrypt provides three work factors that can be customized: N, r and p. N, which
  14. has to be a positive power of two, is the general work factor and scales CPU
  15. time in an approximately linear fashion. r is the block size of the internally
  16. used hash function and p is the parallelization factor. Both r and p need to be
  17. greater than zero. The amount of RAM that scrypt requires for its computation
  18. is roughly (128 * N * r * p) bytes.
  19. In the original paper of Colin Percival ("Stronger Key Derivation via
  20. Sequential Memory-Hard Functions", 2009), the suggested values that give a
  21. computation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N =
  22. 2^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for
  23. this computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5
  24. GHz), this computation takes about 3 seconds. When N, r or p are not specified,
  25. they default to 1048576, 8, and 1, respectively. The maximum amount of RAM that
  26. may be used by scrypt defaults to 1025 MiB.
  27. =head2 Identity
  28. "SCRYPT" is the name for this implementation; it
  29. can be used with the EVP_KDF_fetch() function.
  30. =head2 Supported parameters
  31. The supported parameters are:
  32. =over 4
  33. =item "pass" (B<OSSL_KDF_PARAM_PASSWORD>) <octet string>
  34. =item "salt" (B<OSSL_KDF_PARAM_SALT>) <octet string>
  35. These parameters work as described in L<EVP_KDF(3)/PARAMETERS>.
  36. =item "n" (B<OSSL_KDF_PARAM_SCRYPT_N>) <unsigned integer>
  37. =item "r" (B<OSSL_KDF_PARAM_SCRYPT_R>) <unsigned integer>
  38. =item "p" (B<OSSL_KDF_PARAM_SCRYPT_P>) <unsigned integer>
  39. =item "maxmem_bytes" (B<OSSL_KDF_PARAM_SCRYPT_MAXMEM>) <unsigned integer>
  40. These parameters configure the scrypt work factors N, r, maxmem and p.
  41. Both N and maxmem_bytes are parameters of type B<uint64_t>.
  42. Both r and p are parameters of type B<uint32_t>.
  43. =item "properties" (B<OSSL_KDF_PARAM_PROPERTIES>) <UTF8 string>
  44. This can be used to set the property query string when fetching the
  45. fixed digest internally. NULL is used if this value is not set.
  46. =back
  47. =head1 NOTES
  48. A context for scrypt can be obtained by calling:
  49. EVP_KDF *kdf = EVP_KDF_fetch(NULL, "SCRYPT", NULL);
  50. EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf);
  51. The output length of an scrypt key derivation is specified via the
  52. "keylen" parameter to the L<EVP_KDF_derive(3)> function.
  53. =head1 EXAMPLES
  54. This example derives a 64-byte long test vector using scrypt with the password
  55. "password", salt "NaCl" and N = 1024, r = 8, p = 16.
  56. EVP_KDF *kdf;
  57. EVP_KDF_CTX *kctx;
  58. unsigned char out[64];
  59. OSSL_PARAM params[6], *p = params;
  60. kdf = EVP_KDF_fetch(NULL, "SCRYPT", NULL);
  61. kctx = EVP_KDF_CTX_new(kdf);
  62. EVP_KDF_free(kdf);
  63. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_PASSWORD,
  64. "password", (size_t)8);
  65. *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
  66. "NaCl", (size_t)4);
  67. *p++ = OSSL_PARAM_construct_uint64(OSSL_KDF_PARAM_SCRYPT_N, (uint64_t)1024);
  68. *p++ = OSSL_PARAM_construct_uint32(OSSL_KDF_PARAM_SCRYPT_R, (uint32_t)8);
  69. *p++ = OSSL_PARAM_construct_uint32(OSSL_KDF_PARAM_SCRYPT_P, (uint32_t)16);
  70. *p = OSSL_PARAM_construct_end();
  71. if (EVP_KDF_CTX_set_params(kctx, params) <= 0) {
  72. error("EVP_KDF_CTX_set_params");
  73. }
  74. if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
  75. error("EVP_KDF_derive");
  76. }
  77. {
  78. const unsigned char expected[sizeof(out)] = {
  79. 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
  80. 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
  81. 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
  82. 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
  83. 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
  84. 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
  85. 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
  86. 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
  87. };
  88. assert(!memcmp(out, expected, sizeof(out)));
  89. }
  90. EVP_KDF_CTX_free(kctx);
  91. =head1 CONFORMING TO
  92. RFC 7914
  93. =head1 SEE ALSO
  94. L<EVP_KDF(3)>,
  95. L<EVP_KDF_CTX_new(3)>,
  96. L<EVP_KDF_CTX_free(3)>,
  97. L<EVP_KDF_CTX_set_params(3)>,
  98. L<EVP_KDF_derive(3)>,
  99. L<EVP_KDF(3)/PARAMETERS>
  100. =head1 COPYRIGHT
  101. Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved.
  102. Licensed under the Apache License 2.0 (the "License"). You may not use
  103. this file except in compliance with the License. You can obtain a copy
  104. in the file LICENSE in the source distribution or at
  105. L<https://www.openssl.org/source/license.html>.
  106. =cut