ec_mult.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
  3. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  4. *
  5. * Licensed under the Apache License 2.0 (the "License"). You may not use
  6. * this file except in compliance with the License. You can obtain a copy
  7. * in the file LICENSE in the source distribution or at
  8. * https://www.openssl.org/source/license.html
  9. */
  10. /*
  11. * ECDSA low level APIs are deprecated for public use, but still ok for
  12. * internal use.
  13. */
  14. #include "internal/deprecated.h"
  15. #include <string.h>
  16. #include <openssl/err.h>
  17. #include "internal/cryptlib.h"
  18. #include "crypto/bn.h"
  19. #include "ec_local.h"
  20. #include "internal/refcount.h"
  21. /*
  22. * This file implements the wNAF-based interleaving multi-exponentiation method
  23. * Formerly at:
  24. * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
  25. * You might now find it here:
  26. * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
  27. * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
  28. * For multiplication with precomputation, we use wNAF splitting, formerly at:
  29. * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
  30. */
  31. /* structure for precomputed multiples of the generator */
  32. struct ec_pre_comp_st {
  33. const EC_GROUP *group; /* parent EC_GROUP object */
  34. size_t blocksize; /* block size for wNAF splitting */
  35. size_t numblocks; /* max. number of blocks for which we have
  36. * precomputation */
  37. size_t w; /* window size */
  38. EC_POINT **points; /* array with pre-calculated multiples of
  39. * generator: 'num' pointers to EC_POINT
  40. * objects followed by a NULL */
  41. size_t num; /* numblocks * 2^(w-1) */
  42. CRYPTO_REF_COUNT references;
  43. CRYPTO_RWLOCK *lock;
  44. };
  45. static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
  46. {
  47. EC_PRE_COMP *ret = NULL;
  48. if (!group)
  49. return NULL;
  50. ret = OPENSSL_zalloc(sizeof(*ret));
  51. if (ret == NULL) {
  52. ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
  53. return ret;
  54. }
  55. ret->group = group;
  56. ret->blocksize = 8; /* default */
  57. ret->w = 4; /* default */
  58. ret->references = 1;
  59. ret->lock = CRYPTO_THREAD_lock_new();
  60. if (ret->lock == NULL) {
  61. ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
  62. OPENSSL_free(ret);
  63. return NULL;
  64. }
  65. return ret;
  66. }
  67. EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
  68. {
  69. int i;
  70. if (pre != NULL)
  71. CRYPTO_UP_REF(&pre->references, &i, pre->lock);
  72. return pre;
  73. }
  74. void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
  75. {
  76. int i;
  77. if (pre == NULL)
  78. return;
  79. CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
  80. REF_PRINT_COUNT("EC_ec", pre);
  81. if (i > 0)
  82. return;
  83. REF_ASSERT_ISNT(i < 0);
  84. if (pre->points != NULL) {
  85. EC_POINT **pts;
  86. for (pts = pre->points; *pts != NULL; pts++)
  87. EC_POINT_free(*pts);
  88. OPENSSL_free(pre->points);
  89. }
  90. CRYPTO_THREAD_lock_free(pre->lock);
  91. OPENSSL_free(pre);
  92. }
  93. #define EC_POINT_BN_set_flags(P, flags) do { \
  94. BN_set_flags((P)->X, (flags)); \
  95. BN_set_flags((P)->Y, (flags)); \
  96. BN_set_flags((P)->Z, (flags)); \
  97. } while(0)
  98. /*-
  99. * This functions computes a single point multiplication over the EC group,
  100. * using, at a high level, a Montgomery ladder with conditional swaps, with
  101. * various timing attack defenses.
  102. *
  103. * It performs either a fixed point multiplication
  104. * (scalar * generator)
  105. * when point is NULL, or a variable point multiplication
  106. * (scalar * point)
  107. * when point is not NULL.
  108. *
  109. * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
  110. * constant time bets are off (where n is the cardinality of the EC group).
  111. *
  112. * This function expects `group->order` and `group->cardinality` to be well
  113. * defined and non-zero: it fails with an error code otherwise.
  114. *
  115. * NB: This says nothing about the constant-timeness of the ladder step
  116. * implementation (i.e., the default implementation is based on EC_POINT_add and
  117. * EC_POINT_dbl, which of course are not constant time themselves) or the
  118. * underlying multiprecision arithmetic.
  119. *
  120. * The product is stored in `r`.
  121. *
  122. * This is an internal function: callers are in charge of ensuring that the
  123. * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
  124. *
  125. * Returns 1 on success, 0 otherwise.
  126. */
  127. int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
  128. const BIGNUM *scalar, const EC_POINT *point,
  129. BN_CTX *ctx)
  130. {
  131. int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
  132. EC_POINT *p = NULL;
  133. EC_POINT *s = NULL;
  134. BIGNUM *k = NULL;
  135. BIGNUM *lambda = NULL;
  136. BIGNUM *cardinality = NULL;
  137. int ret = 0;
  138. /* early exit if the input point is the point at infinity */
  139. if (point != NULL && EC_POINT_is_at_infinity(group, point))
  140. return EC_POINT_set_to_infinity(group, r);
  141. if (BN_is_zero(group->order)) {
  142. ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
  143. return 0;
  144. }
  145. if (BN_is_zero(group->cofactor)) {
  146. ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
  147. return 0;
  148. }
  149. BN_CTX_start(ctx);
  150. if (((p = EC_POINT_new(group)) == NULL)
  151. || ((s = EC_POINT_new(group)) == NULL)) {
  152. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
  153. goto err;
  154. }
  155. if (point == NULL) {
  156. if (!EC_POINT_copy(p, group->generator)) {
  157. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
  158. goto err;
  159. }
  160. } else {
  161. if (!EC_POINT_copy(p, point)) {
  162. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
  163. goto err;
  164. }
  165. }
  166. EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
  167. EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
  168. EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
  169. cardinality = BN_CTX_get(ctx);
  170. lambda = BN_CTX_get(ctx);
  171. k = BN_CTX_get(ctx);
  172. if (k == NULL) {
  173. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
  174. goto err;
  175. }
  176. if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
  177. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  178. goto err;
  179. }
  180. /*
  181. * Group cardinalities are often on a word boundary.
  182. * So when we pad the scalar, some timing diff might
  183. * pop if it needs to be expanded due to carries.
  184. * So expand ahead of time.
  185. */
  186. cardinality_bits = BN_num_bits(cardinality);
  187. group_top = bn_get_top(cardinality);
  188. if ((bn_wexpand(k, group_top + 2) == NULL)
  189. || (bn_wexpand(lambda, group_top + 2) == NULL)) {
  190. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  191. goto err;
  192. }
  193. if (!BN_copy(k, scalar)) {
  194. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  195. goto err;
  196. }
  197. BN_set_flags(k, BN_FLG_CONSTTIME);
  198. if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
  199. /*-
  200. * this is an unusual input, and we don't guarantee
  201. * constant-timeness
  202. */
  203. if (!BN_nnmod(k, k, cardinality, ctx)) {
  204. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  205. goto err;
  206. }
  207. }
  208. if (!BN_add(lambda, k, cardinality)) {
  209. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  210. goto err;
  211. }
  212. BN_set_flags(lambda, BN_FLG_CONSTTIME);
  213. if (!BN_add(k, lambda, cardinality)) {
  214. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  215. goto err;
  216. }
  217. /*
  218. * lambda := scalar + cardinality
  219. * k := scalar + 2*cardinality
  220. */
  221. kbit = BN_is_bit_set(lambda, cardinality_bits);
  222. BN_consttime_swap(kbit, k, lambda, group_top + 2);
  223. group_top = bn_get_top(group->field);
  224. if ((bn_wexpand(s->X, group_top) == NULL)
  225. || (bn_wexpand(s->Y, group_top) == NULL)
  226. || (bn_wexpand(s->Z, group_top) == NULL)
  227. || (bn_wexpand(r->X, group_top) == NULL)
  228. || (bn_wexpand(r->Y, group_top) == NULL)
  229. || (bn_wexpand(r->Z, group_top) == NULL)
  230. || (bn_wexpand(p->X, group_top) == NULL)
  231. || (bn_wexpand(p->Y, group_top) == NULL)
  232. || (bn_wexpand(p->Z, group_top) == NULL)) {
  233. ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
  234. goto err;
  235. }
  236. /*-
  237. * Apply coordinate blinding for EC_POINT.
  238. *
  239. * The underlying EC_METHOD can optionally implement this function:
  240. * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
  241. * success or if coordinate blinding is not implemented for this
  242. * group.
  243. */
  244. if (!ec_point_blind_coordinates(group, p, ctx)) {
  245. ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE);
  246. goto err;
  247. }
  248. /* Initialize the Montgomery ladder */
  249. if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
  250. ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
  251. goto err;
  252. }
  253. /* top bit is a 1, in a fixed pos */
  254. pbit = 1;
  255. #define EC_POINT_CSWAP(c, a, b, w, t) do { \
  256. BN_consttime_swap(c, (a)->X, (b)->X, w); \
  257. BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
  258. BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
  259. t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
  260. (a)->Z_is_one ^= (t); \
  261. (b)->Z_is_one ^= (t); \
  262. } while(0)
  263. /*-
  264. * The ladder step, with branches, is
  265. *
  266. * k[i] == 0: S = add(R, S), R = dbl(R)
  267. * k[i] == 1: R = add(S, R), S = dbl(S)
  268. *
  269. * Swapping R, S conditionally on k[i] leaves you with state
  270. *
  271. * k[i] == 0: T, U = R, S
  272. * k[i] == 1: T, U = S, R
  273. *
  274. * Then perform the ECC ops.
  275. *
  276. * U = add(T, U)
  277. * T = dbl(T)
  278. *
  279. * Which leaves you with state
  280. *
  281. * k[i] == 0: U = add(R, S), T = dbl(R)
  282. * k[i] == 1: U = add(S, R), T = dbl(S)
  283. *
  284. * Swapping T, U conditionally on k[i] leaves you with state
  285. *
  286. * k[i] == 0: R, S = T, U
  287. * k[i] == 1: R, S = U, T
  288. *
  289. * Which leaves you with state
  290. *
  291. * k[i] == 0: S = add(R, S), R = dbl(R)
  292. * k[i] == 1: R = add(S, R), S = dbl(S)
  293. *
  294. * So we get the same logic, but instead of a branch it's a
  295. * conditional swap, followed by ECC ops, then another conditional swap.
  296. *
  297. * Optimization: The end of iteration i and start of i-1 looks like
  298. *
  299. * ...
  300. * CSWAP(k[i], R, S)
  301. * ECC
  302. * CSWAP(k[i], R, S)
  303. * (next iteration)
  304. * CSWAP(k[i-1], R, S)
  305. * ECC
  306. * CSWAP(k[i-1], R, S)
  307. * ...
  308. *
  309. * So instead of two contiguous swaps, you can merge the condition
  310. * bits and do a single swap.
  311. *
  312. * k[i] k[i-1] Outcome
  313. * 0 0 No Swap
  314. * 0 1 Swap
  315. * 1 0 Swap
  316. * 1 1 No Swap
  317. *
  318. * This is XOR. pbit tracks the previous bit of k.
  319. */
  320. for (i = cardinality_bits - 1; i >= 0; i--) {
  321. kbit = BN_is_bit_set(k, i) ^ pbit;
  322. EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
  323. /* Perform a single step of the Montgomery ladder */
  324. if (!ec_point_ladder_step(group, r, s, p, ctx)) {
  325. ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
  326. goto err;
  327. }
  328. /*
  329. * pbit logic merges this cswap with that of the
  330. * next iteration
  331. */
  332. pbit ^= kbit;
  333. }
  334. /* one final cswap to move the right value into r */
  335. EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
  336. #undef EC_POINT_CSWAP
  337. /* Finalize ladder (and recover full point coordinates) */
  338. if (!ec_point_ladder_post(group, r, s, p, ctx)) {
  339. ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
  340. goto err;
  341. }
  342. ret = 1;
  343. err:
  344. EC_POINT_free(p);
  345. EC_POINT_clear_free(s);
  346. BN_CTX_end(ctx);
  347. return ret;
  348. }
  349. #undef EC_POINT_BN_set_flags
  350. /*
  351. * TODO: table should be optimised for the wNAF-based implementation,
  352. * sometimes smaller windows will give better performance (thus the
  353. * boundaries should be increased)
  354. */
  355. #define EC_window_bits_for_scalar_size(b) \
  356. ((size_t) \
  357. ((b) >= 2000 ? 6 : \
  358. (b) >= 800 ? 5 : \
  359. (b) >= 300 ? 4 : \
  360. (b) >= 70 ? 3 : \
  361. (b) >= 20 ? 2 : \
  362. 1))
  363. /*-
  364. * Compute
  365. * \sum scalars[i]*points[i],
  366. * also including
  367. * scalar*generator
  368. * in the addition if scalar != NULL
  369. */
  370. int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
  371. size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
  372. BN_CTX *ctx)
  373. {
  374. const EC_POINT *generator = NULL;
  375. EC_POINT *tmp = NULL;
  376. size_t totalnum;
  377. size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
  378. size_t pre_points_per_block = 0;
  379. size_t i, j;
  380. int k;
  381. int r_is_inverted = 0;
  382. int r_is_at_infinity = 1;
  383. size_t *wsize = NULL; /* individual window sizes */
  384. signed char **wNAF = NULL; /* individual wNAFs */
  385. size_t *wNAF_len = NULL;
  386. size_t max_len = 0;
  387. size_t num_val;
  388. EC_POINT **val = NULL; /* precomputation */
  389. EC_POINT **v;
  390. EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
  391. * 'pre_comp->points' */
  392. const EC_PRE_COMP *pre_comp = NULL;
  393. int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
  394. * treated like other scalars, i.e.
  395. * precomputation is not available */
  396. int ret = 0;
  397. if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
  398. /*-
  399. * Handle the common cases where the scalar is secret, enforcing a
  400. * scalar multiplication implementation based on a Montgomery ladder,
  401. * with various timing attack defenses.
  402. */
  403. if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
  404. /*-
  405. * In this case we want to compute scalar * GeneratorPoint: this
  406. * codepath is reached most prominently by (ephemeral) key
  407. * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
  408. * ECDH keygen/first half), where the scalar is always secret. This
  409. * is why we ignore if BN_FLG_CONSTTIME is actually set and we
  410. * always call the ladder version.
  411. */
  412. return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
  413. }
  414. if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
  415. /*-
  416. * In this case we want to compute scalar * VariablePoint: this
  417. * codepath is reached most prominently by the second half of ECDH,
  418. * where the secret scalar is multiplied by the peer's public point.
  419. * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
  420. * actually set and we always call the ladder version.
  421. */
  422. return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
  423. }
  424. }
  425. if (scalar != NULL) {
  426. generator = EC_GROUP_get0_generator(group);
  427. if (generator == NULL) {
  428. ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
  429. goto err;
  430. }
  431. /* look if we can use precomputed multiples of generator */
  432. pre_comp = group->pre_comp.ec;
  433. if (pre_comp && pre_comp->numblocks
  434. && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
  435. 0)) {
  436. blocksize = pre_comp->blocksize;
  437. /*
  438. * determine maximum number of blocks that wNAF splitting may
  439. * yield (NB: maximum wNAF length is bit length plus one)
  440. */
  441. numblocks = (BN_num_bits(scalar) / blocksize) + 1;
  442. /*
  443. * we cannot use more blocks than we have precomputation for
  444. */
  445. if (numblocks > pre_comp->numblocks)
  446. numblocks = pre_comp->numblocks;
  447. pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
  448. /* check that pre_comp looks sane */
  449. if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
  450. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  451. goto err;
  452. }
  453. } else {
  454. /* can't use precomputation */
  455. pre_comp = NULL;
  456. numblocks = 1;
  457. num_scalar = 1; /* treat 'scalar' like 'num'-th element of
  458. * 'scalars' */
  459. }
  460. }
  461. totalnum = num + numblocks;
  462. wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
  463. wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
  464. /* include space for pivot */
  465. wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
  466. val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
  467. /* Ensure wNAF is initialised in case we end up going to err */
  468. if (wNAF != NULL)
  469. wNAF[0] = NULL; /* preliminary pivot */
  470. if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
  471. ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
  472. goto err;
  473. }
  474. /*
  475. * num_val will be the total number of temporarily precomputed points
  476. */
  477. num_val = 0;
  478. for (i = 0; i < num + num_scalar; i++) {
  479. size_t bits;
  480. bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
  481. wsize[i] = EC_window_bits_for_scalar_size(bits);
  482. num_val += (size_t)1 << (wsize[i] - 1);
  483. wNAF[i + 1] = NULL; /* make sure we always have a pivot */
  484. wNAF[i] =
  485. bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
  486. &wNAF_len[i]);
  487. if (wNAF[i] == NULL)
  488. goto err;
  489. if (wNAF_len[i] > max_len)
  490. max_len = wNAF_len[i];
  491. }
  492. if (numblocks) {
  493. /* we go here iff scalar != NULL */
  494. if (pre_comp == NULL) {
  495. if (num_scalar != 1) {
  496. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  497. goto err;
  498. }
  499. /* we have already generated a wNAF for 'scalar' */
  500. } else {
  501. signed char *tmp_wNAF = NULL;
  502. size_t tmp_len = 0;
  503. if (num_scalar != 0) {
  504. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  505. goto err;
  506. }
  507. /*
  508. * use the window size for which we have precomputation
  509. */
  510. wsize[num] = pre_comp->w;
  511. tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
  512. if (!tmp_wNAF)
  513. goto err;
  514. if (tmp_len <= max_len) {
  515. /*
  516. * One of the other wNAFs is at least as long as the wNAF
  517. * belonging to the generator, so wNAF splitting will not buy
  518. * us anything.
  519. */
  520. numblocks = 1;
  521. totalnum = num + 1; /* don't use wNAF splitting */
  522. wNAF[num] = tmp_wNAF;
  523. wNAF[num + 1] = NULL;
  524. wNAF_len[num] = tmp_len;
  525. /*
  526. * pre_comp->points starts with the points that we need here:
  527. */
  528. val_sub[num] = pre_comp->points;
  529. } else {
  530. /*
  531. * don't include tmp_wNAF directly into wNAF array - use wNAF
  532. * splitting and include the blocks
  533. */
  534. signed char *pp;
  535. EC_POINT **tmp_points;
  536. if (tmp_len < numblocks * blocksize) {
  537. /*
  538. * possibly we can do with fewer blocks than estimated
  539. */
  540. numblocks = (tmp_len + blocksize - 1) / blocksize;
  541. if (numblocks > pre_comp->numblocks) {
  542. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  543. OPENSSL_free(tmp_wNAF);
  544. goto err;
  545. }
  546. totalnum = num + numblocks;
  547. }
  548. /* split wNAF in 'numblocks' parts */
  549. pp = tmp_wNAF;
  550. tmp_points = pre_comp->points;
  551. for (i = num; i < totalnum; i++) {
  552. if (i < totalnum - 1) {
  553. wNAF_len[i] = blocksize;
  554. if (tmp_len < blocksize) {
  555. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  556. OPENSSL_free(tmp_wNAF);
  557. goto err;
  558. }
  559. tmp_len -= blocksize;
  560. } else
  561. /*
  562. * last block gets whatever is left (this could be
  563. * more or less than 'blocksize'!)
  564. */
  565. wNAF_len[i] = tmp_len;
  566. wNAF[i + 1] = NULL;
  567. wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
  568. if (wNAF[i] == NULL) {
  569. ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
  570. OPENSSL_free(tmp_wNAF);
  571. goto err;
  572. }
  573. memcpy(wNAF[i], pp, wNAF_len[i]);
  574. if (wNAF_len[i] > max_len)
  575. max_len = wNAF_len[i];
  576. if (*tmp_points == NULL) {
  577. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  578. OPENSSL_free(tmp_wNAF);
  579. goto err;
  580. }
  581. val_sub[i] = tmp_points;
  582. tmp_points += pre_points_per_block;
  583. pp += blocksize;
  584. }
  585. OPENSSL_free(tmp_wNAF);
  586. }
  587. }
  588. }
  589. /*
  590. * All points we precompute now go into a single array 'val'.
  591. * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
  592. * subarray of 'pre_comp->points' if we already have precomputation.
  593. */
  594. val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
  595. if (val == NULL) {
  596. ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
  597. goto err;
  598. }
  599. val[num_val] = NULL; /* pivot element */
  600. /* allocate points for precomputation */
  601. v = val;
  602. for (i = 0; i < num + num_scalar; i++) {
  603. val_sub[i] = v;
  604. for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  605. *v = EC_POINT_new(group);
  606. if (*v == NULL)
  607. goto err;
  608. v++;
  609. }
  610. }
  611. if (!(v == val + num_val)) {
  612. ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
  613. goto err;
  614. }
  615. if ((tmp = EC_POINT_new(group)) == NULL)
  616. goto err;
  617. /*-
  618. * prepare precomputed values:
  619. * val_sub[i][0] := points[i]
  620. * val_sub[i][1] := 3 * points[i]
  621. * val_sub[i][2] := 5 * points[i]
  622. * ...
  623. */
  624. for (i = 0; i < num + num_scalar; i++) {
  625. if (i < num) {
  626. if (!EC_POINT_copy(val_sub[i][0], points[i]))
  627. goto err;
  628. } else {
  629. if (!EC_POINT_copy(val_sub[i][0], generator))
  630. goto err;
  631. }
  632. if (wsize[i] > 1) {
  633. if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
  634. goto err;
  635. for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  636. if (!EC_POINT_add
  637. (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
  638. goto err;
  639. }
  640. }
  641. }
  642. if (!EC_POINTs_make_affine(group, num_val, val, ctx))
  643. goto err;
  644. r_is_at_infinity = 1;
  645. for (k = max_len - 1; k >= 0; k--) {
  646. if (!r_is_at_infinity) {
  647. if (!EC_POINT_dbl(group, r, r, ctx))
  648. goto err;
  649. }
  650. for (i = 0; i < totalnum; i++) {
  651. if (wNAF_len[i] > (size_t)k) {
  652. int digit = wNAF[i][k];
  653. int is_neg;
  654. if (digit) {
  655. is_neg = digit < 0;
  656. if (is_neg)
  657. digit = -digit;
  658. if (is_neg != r_is_inverted) {
  659. if (!r_is_at_infinity) {
  660. if (!EC_POINT_invert(group, r, ctx))
  661. goto err;
  662. }
  663. r_is_inverted = !r_is_inverted;
  664. }
  665. /* digit > 0 */
  666. if (r_is_at_infinity) {
  667. if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
  668. goto err;
  669. r_is_at_infinity = 0;
  670. } else {
  671. if (!EC_POINT_add
  672. (group, r, r, val_sub[i][digit >> 1], ctx))
  673. goto err;
  674. }
  675. }
  676. }
  677. }
  678. }
  679. if (r_is_at_infinity) {
  680. if (!EC_POINT_set_to_infinity(group, r))
  681. goto err;
  682. } else {
  683. if (r_is_inverted)
  684. if (!EC_POINT_invert(group, r, ctx))
  685. goto err;
  686. }
  687. ret = 1;
  688. err:
  689. EC_POINT_free(tmp);
  690. OPENSSL_free(wsize);
  691. OPENSSL_free(wNAF_len);
  692. if (wNAF != NULL) {
  693. signed char **w;
  694. for (w = wNAF; *w != NULL; w++)
  695. OPENSSL_free(*w);
  696. OPENSSL_free(wNAF);
  697. }
  698. if (val != NULL) {
  699. for (v = val; *v != NULL; v++)
  700. EC_POINT_clear_free(*v);
  701. OPENSSL_free(val);
  702. }
  703. OPENSSL_free(val_sub);
  704. return ret;
  705. }
  706. /*-
  707. * ec_wNAF_precompute_mult()
  708. * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
  709. * for use with wNAF splitting as implemented in ec_wNAF_mul().
  710. *
  711. * 'pre_comp->points' is an array of multiples of the generator
  712. * of the following form:
  713. * points[0] = generator;
  714. * points[1] = 3 * generator;
  715. * ...
  716. * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
  717. * points[2^(w-1)] = 2^blocksize * generator;
  718. * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
  719. * ...
  720. * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
  721. * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
  722. * ...
  723. * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
  724. * points[2^(w-1)*numblocks] = NULL
  725. */
  726. int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
  727. {
  728. const EC_POINT *generator;
  729. EC_POINT *tmp_point = NULL, *base = NULL, **var;
  730. const BIGNUM *order;
  731. size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
  732. EC_POINT **points = NULL;
  733. EC_PRE_COMP *pre_comp;
  734. int ret = 0;
  735. #ifndef FIPS_MODE
  736. BN_CTX *new_ctx = NULL;
  737. #endif
  738. /* if there is an old EC_PRE_COMP object, throw it away */
  739. EC_pre_comp_free(group);
  740. if ((pre_comp = ec_pre_comp_new(group)) == NULL)
  741. return 0;
  742. generator = EC_GROUP_get0_generator(group);
  743. if (generator == NULL) {
  744. ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
  745. goto err;
  746. }
  747. #ifndef FIPS_MODE
  748. if (ctx == NULL)
  749. ctx = new_ctx = BN_CTX_new();
  750. #endif
  751. if (ctx == NULL)
  752. goto err;
  753. BN_CTX_start(ctx);
  754. order = EC_GROUP_get0_order(group);
  755. if (order == NULL)
  756. goto err;
  757. if (BN_is_zero(order)) {
  758. ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
  759. goto err;
  760. }
  761. bits = BN_num_bits(order);
  762. /*
  763. * The following parameters mean we precompute (approximately) one point
  764. * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
  765. * bit lengths, other parameter combinations might provide better
  766. * efficiency.
  767. */
  768. blocksize = 8;
  769. w = 4;
  770. if (EC_window_bits_for_scalar_size(bits) > w) {
  771. /* let's not make the window too small ... */
  772. w = EC_window_bits_for_scalar_size(bits);
  773. }
  774. numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
  775. * to use for wNAF
  776. * splitting */
  777. pre_points_per_block = (size_t)1 << (w - 1);
  778. num = pre_points_per_block * numblocks; /* number of points to compute
  779. * and store */
  780. points = OPENSSL_malloc(sizeof(*points) * (num + 1));
  781. if (points == NULL) {
  782. ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
  783. goto err;
  784. }
  785. var = points;
  786. var[num] = NULL; /* pivot */
  787. for (i = 0; i < num; i++) {
  788. if ((var[i] = EC_POINT_new(group)) == NULL) {
  789. ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
  790. goto err;
  791. }
  792. }
  793. if ((tmp_point = EC_POINT_new(group)) == NULL
  794. || (base = EC_POINT_new(group)) == NULL) {
  795. ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
  796. goto err;
  797. }
  798. if (!EC_POINT_copy(base, generator))
  799. goto err;
  800. /* do the precomputation */
  801. for (i = 0; i < numblocks; i++) {
  802. size_t j;
  803. if (!EC_POINT_dbl(group, tmp_point, base, ctx))
  804. goto err;
  805. if (!EC_POINT_copy(*var++, base))
  806. goto err;
  807. for (j = 1; j < pre_points_per_block; j++, var++) {
  808. /*
  809. * calculate odd multiples of the current base point
  810. */
  811. if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
  812. goto err;
  813. }
  814. if (i < numblocks - 1) {
  815. /*
  816. * get the next base (multiply current one by 2^blocksize)
  817. */
  818. size_t k;
  819. if (blocksize <= 2) {
  820. ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
  821. goto err;
  822. }
  823. if (!EC_POINT_dbl(group, base, tmp_point, ctx))
  824. goto err;
  825. for (k = 2; k < blocksize; k++) {
  826. if (!EC_POINT_dbl(group, base, base, ctx))
  827. goto err;
  828. }
  829. }
  830. }
  831. if (!EC_POINTs_make_affine(group, num, points, ctx))
  832. goto err;
  833. pre_comp->group = group;
  834. pre_comp->blocksize = blocksize;
  835. pre_comp->numblocks = numblocks;
  836. pre_comp->w = w;
  837. pre_comp->points = points;
  838. points = NULL;
  839. pre_comp->num = num;
  840. SETPRECOMP(group, ec, pre_comp);
  841. pre_comp = NULL;
  842. ret = 1;
  843. err:
  844. BN_CTX_end(ctx);
  845. #ifndef FIPS_MODE
  846. BN_CTX_free(new_ctx);
  847. #endif
  848. EC_ec_pre_comp_free(pre_comp);
  849. if (points) {
  850. EC_POINT **p;
  851. for (p = points; *p != NULL; p++)
  852. EC_POINT_free(*p);
  853. OPENSSL_free(points);
  854. }
  855. EC_POINT_free(tmp_point);
  856. EC_POINT_free(base);
  857. return ret;
  858. }
  859. int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
  860. {
  861. return HAVEPRECOMP(group, ec);
  862. }