rsa_ssl.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. /*
  2. * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <stdio.h>
  10. #include "internal/cryptlib.h"
  11. #include <openssl/bn.h>
  12. #include <openssl/rsa.h>
  13. #include <openssl/rand.h>
  14. #include "internal/constant_time.h"
  15. int RSA_padding_add_SSLv23(unsigned char *to, int tlen,
  16. const unsigned char *from, int flen)
  17. {
  18. int i, j;
  19. unsigned char *p;
  20. if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
  21. RSAerr(RSA_F_RSA_PADDING_ADD_SSLV23,
  22. RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
  23. return 0;
  24. }
  25. p = (unsigned char *)to;
  26. *(p++) = 0;
  27. *(p++) = 2; /* Public Key BT (Block Type) */
  28. /* pad out with non-zero random data */
  29. j = tlen - 3 - 8 - flen;
  30. if (RAND_bytes(p, j) <= 0)
  31. return 0;
  32. for (i = 0; i < j; i++) {
  33. if (*p == '\0')
  34. do {
  35. if (RAND_bytes(p, 1) <= 0)
  36. return 0;
  37. } while (*p == '\0');
  38. p++;
  39. }
  40. memset(p, 3, 8);
  41. p += 8;
  42. *(p++) = '\0';
  43. memcpy(p, from, (unsigned int)flen);
  44. return 1;
  45. }
  46. /*
  47. * Copy of RSA_padding_check_PKCS1_type_2 with a twist that rejects padding
  48. * if nul delimiter is not preceded by 8 consecutive 0x03 bytes. It also
  49. * preserves error code reporting for backward compatibility.
  50. */
  51. int RSA_padding_check_SSLv23(unsigned char *to, int tlen,
  52. const unsigned char *from, int flen, int num)
  53. {
  54. int i;
  55. /* |em| is the encoded message, zero-padded to exactly |num| bytes */
  56. unsigned char *em = NULL;
  57. unsigned int good, found_zero_byte, mask, threes_in_row;
  58. int zero_index = 0, msg_index, mlen = -1, err;
  59. if (tlen <= 0 || flen <= 0)
  60. return -1;
  61. if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
  62. RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, RSA_R_DATA_TOO_SMALL);
  63. return -1;
  64. }
  65. em = OPENSSL_malloc(num);
  66. if (em == NULL) {
  67. RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, ERR_R_MALLOC_FAILURE);
  68. return -1;
  69. }
  70. /*
  71. * Caller is encouraged to pass zero-padded message created with
  72. * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
  73. * bounds, it's impossible to have an invariant memory access pattern
  74. * in case |from| was not zero-padded in advance.
  75. */
  76. for (from += flen, em += num, i = 0; i < num; i++) {
  77. mask = ~constant_time_is_zero(flen);
  78. flen -= 1 & mask;
  79. from -= 1 & mask;
  80. *--em = *from & mask;
  81. }
  82. good = constant_time_is_zero(em[0]);
  83. good &= constant_time_eq(em[1], 2);
  84. err = constant_time_select_int(good, 0, RSA_R_BLOCK_TYPE_IS_NOT_02);
  85. mask = ~good;
  86. /* scan over padding data */
  87. found_zero_byte = 0;
  88. threes_in_row = 0;
  89. for (i = 2; i < num; i++) {
  90. unsigned int equals0 = constant_time_is_zero(em[i]);
  91. zero_index = constant_time_select_int(~found_zero_byte & equals0,
  92. i, zero_index);
  93. found_zero_byte |= equals0;
  94. threes_in_row += 1 & ~found_zero_byte;
  95. threes_in_row &= found_zero_byte | constant_time_eq(em[i], 3);
  96. }
  97. /*
  98. * PS must be at least 8 bytes long, and it starts two bytes into |em|.
  99. * If we never found a 0-byte, then |zero_index| is 0 and the check
  100. * also fails.
  101. */
  102. good &= constant_time_ge(zero_index, 2 + 8);
  103. err = constant_time_select_int(mask | good, err,
  104. RSA_R_NULL_BEFORE_BLOCK_MISSING);
  105. mask = ~good;
  106. good &= constant_time_ge(threes_in_row, 8);
  107. err = constant_time_select_int(mask | good, err,
  108. RSA_R_SSLV3_ROLLBACK_ATTACK);
  109. mask = ~good;
  110. /*
  111. * Skip the zero byte. This is incorrect if we never found a zero-byte
  112. * but in this case we also do not copy the message out.
  113. */
  114. msg_index = zero_index + 1;
  115. mlen = num - msg_index;
  116. /*
  117. * For good measure, do this check in constant time as well.
  118. */
  119. good &= constant_time_ge(tlen, mlen);
  120. err = constant_time_select_int(mask | good, err, RSA_R_DATA_TOO_LARGE);
  121. /*
  122. * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
  123. * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
  124. * Otherwise leave |to| unchanged.
  125. * Copy the memory back in a way that does not reveal the size of
  126. * the data being copied via a timing side channel. This requires copying
  127. * parts of the buffer multiple times based on the bits set in the real
  128. * length. Clear bits do a non-copy with identical access pattern.
  129. * The loop below has overall complexity of O(N*log(N)).
  130. */
  131. tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
  132. num - RSA_PKCS1_PADDING_SIZE, tlen);
  133. for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
  134. mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
  135. for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
  136. em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
  137. }
  138. for (i = 0; i < tlen; i++) {
  139. mask = good & constant_time_lt(i, mlen);
  140. to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
  141. }
  142. OPENSSL_clear_free(em, num);
  143. RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23, err);
  144. err_clear_last_constant_time(1 & good);
  145. return constant_time_select_int(good, mlen, -1);
  146. }