123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680 |
- /*
- * Copyright 2001-2017 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <string.h>
- #include <openssl/err.h>
- #include "internal/cryptlib.h"
- #include "internal/bn_int.h"
- #include "ec_lcl.h"
- #include "internal/refcount.h"
- /*
- * This file implements the wNAF-based interleaving multi-exponentiation method
- * Formerly at:
- * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
- * You might now find it here:
- * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
- * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
- * For multiplication with precomputation, we use wNAF splitting, formerly at:
- * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
- */
- /* structure for precomputed multiples of the generator */
- struct ec_pre_comp_st {
- const EC_GROUP *group; /* parent EC_GROUP object */
- size_t blocksize; /* block size for wNAF splitting */
- size_t numblocks; /* max. number of blocks for which we have
- * precomputation */
- size_t w; /* window size */
- EC_POINT **points; /* array with pre-calculated multiples of
- * generator: 'num' pointers to EC_POINT
- * objects followed by a NULL */
- size_t num; /* numblocks * 2^(w-1) */
- CRYPTO_REF_COUNT references;
- CRYPTO_RWLOCK *lock;
- };
- static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
- {
- EC_PRE_COMP *ret = NULL;
- if (!group)
- return NULL;
- ret = OPENSSL_zalloc(sizeof(*ret));
- if (ret == NULL) {
- ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- return ret;
- }
- ret->group = group;
- ret->blocksize = 8; /* default */
- ret->w = 4; /* default */
- ret->references = 1;
- ret->lock = CRYPTO_THREAD_lock_new();
- if (ret->lock == NULL) {
- ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
- }
- return ret;
- }
- EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
- {
- int i;
- if (pre != NULL)
- CRYPTO_UP_REF(&pre->references, &i, pre->lock);
- return pre;
- }
- void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
- {
- int i;
- if (pre == NULL)
- return;
- CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
- REF_PRINT_COUNT("EC_ec", pre);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- if (pre->points != NULL) {
- EC_POINT **pts;
- for (pts = pre->points; *pts != NULL; pts++)
- EC_POINT_free(*pts);
- OPENSSL_free(pre->points);
- }
- CRYPTO_THREAD_lock_free(pre->lock);
- OPENSSL_free(pre);
- }
- /*
- * TODO: table should be optimised for the wNAF-based implementation,
- * sometimes smaller windows will give better performance (thus the
- * boundaries should be increased)
- */
- #define EC_window_bits_for_scalar_size(b) \
- ((size_t) \
- ((b) >= 2000 ? 6 : \
- (b) >= 800 ? 5 : \
- (b) >= 300 ? 4 : \
- (b) >= 70 ? 3 : \
- (b) >= 20 ? 2 : \
- 1))
- /*-
- * Compute
- * \sum scalars[i]*points[i],
- * also including
- * scalar*generator
- * in the addition if scalar != NULL
- */
- int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
- size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- const EC_POINT *generator = NULL;
- EC_POINT *tmp = NULL;
- size_t totalnum;
- size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
- size_t pre_points_per_block = 0;
- size_t i, j;
- int k;
- int r_is_inverted = 0;
- int r_is_at_infinity = 1;
- size_t *wsize = NULL; /* individual window sizes */
- signed char **wNAF = NULL; /* individual wNAFs */
- size_t *wNAF_len = NULL;
- size_t max_len = 0;
- size_t num_val;
- EC_POINT **val = NULL; /* precomputation */
- EC_POINT **v;
- EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
- * 'pre_comp->points' */
- const EC_PRE_COMP *pre_comp = NULL;
- int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
- * treated like other scalars, i.e.
- * precomputation is not available */
- int ret = 0;
- if (group->meth != r->meth) {
- ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
- return 0;
- }
- if ((scalar == NULL) && (num == 0)) {
- return EC_POINT_set_to_infinity(group, r);
- }
- for (i = 0; i < num; i++) {
- if (group->meth != points[i]->meth) {
- ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
- return 0;
- }
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- goto err;
- }
- if (scalar != NULL) {
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- /* look if we can use precomputed multiples of generator */
- pre_comp = group->pre_comp.ec;
- if (pre_comp && pre_comp->numblocks
- && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
- 0)) {
- blocksize = pre_comp->blocksize;
- /*
- * determine maximum number of blocks that wNAF splitting may
- * yield (NB: maximum wNAF length is bit length plus one)
- */
- numblocks = (BN_num_bits(scalar) / blocksize) + 1;
- /*
- * we cannot use more blocks than we have precomputation for
- */
- if (numblocks > pre_comp->numblocks)
- numblocks = pre_comp->numblocks;
- pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
- /* check that pre_comp looks sane */
- if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- } else {
- /* can't use precomputation */
- pre_comp = NULL;
- numblocks = 1;
- num_scalar = 1; /* treat 'scalar' like 'num'-th element of
- * 'scalars' */
- }
- }
- totalnum = num + numblocks;
- wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
- wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
- /* include space for pivot */
- wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
- val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
- /* Ensure wNAF is initialised in case we end up going to err */
- if (wNAF != NULL)
- wNAF[0] = NULL; /* preliminary pivot */
- if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- /*
- * num_val will be the total number of temporarily precomputed points
- */
- num_val = 0;
- for (i = 0; i < num + num_scalar; i++) {
- size_t bits;
- bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
- wsize[i] = EC_window_bits_for_scalar_size(bits);
- num_val += (size_t)1 << (wsize[i] - 1);
- wNAF[i + 1] = NULL; /* make sure we always have a pivot */
- wNAF[i] =
- bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
- &wNAF_len[i]);
- if (wNAF[i] == NULL)
- goto err;
- if (wNAF_len[i] > max_len)
- max_len = wNAF_len[i];
- }
- if (numblocks) {
- /* we go here iff scalar != NULL */
- if (pre_comp == NULL) {
- if (num_scalar != 1) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- /* we have already generated a wNAF for 'scalar' */
- } else {
- signed char *tmp_wNAF = NULL;
- size_t tmp_len = 0;
- if (num_scalar != 0) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- /*
- * use the window size for which we have precomputation
- */
- wsize[num] = pre_comp->w;
- tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
- if (!tmp_wNAF)
- goto err;
- if (tmp_len <= max_len) {
- /*
- * One of the other wNAFs is at least as long as the wNAF
- * belonging to the generator, so wNAF splitting will not buy
- * us anything.
- */
- numblocks = 1;
- totalnum = num + 1; /* don't use wNAF splitting */
- wNAF[num] = tmp_wNAF;
- wNAF[num + 1] = NULL;
- wNAF_len[num] = tmp_len;
- /*
- * pre_comp->points starts with the points that we need here:
- */
- val_sub[num] = pre_comp->points;
- } else {
- /*
- * don't include tmp_wNAF directly into wNAF array - use wNAF
- * splitting and include the blocks
- */
- signed char *pp;
- EC_POINT **tmp_points;
- if (tmp_len < numblocks * blocksize) {
- /*
- * possibly we can do with fewer blocks than estimated
- */
- numblocks = (tmp_len + blocksize - 1) / blocksize;
- if (numblocks > pre_comp->numblocks) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- totalnum = num + numblocks;
- }
- /* split wNAF in 'numblocks' parts */
- pp = tmp_wNAF;
- tmp_points = pre_comp->points;
- for (i = num; i < totalnum; i++) {
- if (i < totalnum - 1) {
- wNAF_len[i] = blocksize;
- if (tmp_len < blocksize) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- tmp_len -= blocksize;
- } else
- /*
- * last block gets whatever is left (this could be
- * more or less than 'blocksize'!)
- */
- wNAF_len[i] = tmp_len;
- wNAF[i + 1] = NULL;
- wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
- if (wNAF[i] == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- memcpy(wNAF[i], pp, wNAF_len[i]);
- if (wNAF_len[i] > max_len)
- max_len = wNAF_len[i];
- if (*tmp_points == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- OPENSSL_free(tmp_wNAF);
- goto err;
- }
- val_sub[i] = tmp_points;
- tmp_points += pre_points_per_block;
- pp += blocksize;
- }
- OPENSSL_free(tmp_wNAF);
- }
- }
- }
- /*
- * All points we precompute now go into a single array 'val'.
- * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
- * subarray of 'pre_comp->points' if we already have precomputation.
- */
- val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
- if (val == NULL) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- val[num_val] = NULL; /* pivot element */
- /* allocate points for precomputation */
- v = val;
- for (i = 0; i < num + num_scalar; i++) {
- val_sub[i] = v;
- for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
- *v = EC_POINT_new(group);
- if (*v == NULL)
- goto err;
- v++;
- }
- }
- if (!(v == val + num_val)) {
- ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if ((tmp = EC_POINT_new(group)) == NULL)
- goto err;
- /*-
- * prepare precomputed values:
- * val_sub[i][0] := points[i]
- * val_sub[i][1] := 3 * points[i]
- * val_sub[i][2] := 5 * points[i]
- * ...
- */
- for (i = 0; i < num + num_scalar; i++) {
- if (i < num) {
- if (!EC_POINT_copy(val_sub[i][0], points[i]))
- goto err;
- } else {
- if (!EC_POINT_copy(val_sub[i][0], generator))
- goto err;
- }
- if (wsize[i] > 1) {
- if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
- goto err;
- for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
- if (!EC_POINT_add
- (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
- goto err;
- }
- }
- }
- if (!EC_POINTs_make_affine(group, num_val, val, ctx))
- goto err;
- r_is_at_infinity = 1;
- for (k = max_len - 1; k >= 0; k--) {
- if (!r_is_at_infinity) {
- if (!EC_POINT_dbl(group, r, r, ctx))
- goto err;
- }
- for (i = 0; i < totalnum; i++) {
- if (wNAF_len[i] > (size_t)k) {
- int digit = wNAF[i][k];
- int is_neg;
- if (digit) {
- is_neg = digit < 0;
- if (is_neg)
- digit = -digit;
- if (is_neg != r_is_inverted) {
- if (!r_is_at_infinity) {
- if (!EC_POINT_invert(group, r, ctx))
- goto err;
- }
- r_is_inverted = !r_is_inverted;
- }
- /* digit > 0 */
- if (r_is_at_infinity) {
- if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
- goto err;
- r_is_at_infinity = 0;
- } else {
- if (!EC_POINT_add
- (group, r, r, val_sub[i][digit >> 1], ctx))
- goto err;
- }
- }
- }
- }
- }
- if (r_is_at_infinity) {
- if (!EC_POINT_set_to_infinity(group, r))
- goto err;
- } else {
- if (r_is_inverted)
- if (!EC_POINT_invert(group, r, ctx))
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- EC_POINT_free(tmp);
- OPENSSL_free(wsize);
- OPENSSL_free(wNAF_len);
- if (wNAF != NULL) {
- signed char **w;
- for (w = wNAF; *w != NULL; w++)
- OPENSSL_free(*w);
- OPENSSL_free(wNAF);
- }
- if (val != NULL) {
- for (v = val; *v != NULL; v++)
- EC_POINT_clear_free(*v);
- OPENSSL_free(val);
- }
- OPENSSL_free(val_sub);
- return ret;
- }
- /*-
- * ec_wNAF_precompute_mult()
- * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
- * for use with wNAF splitting as implemented in ec_wNAF_mul().
- *
- * 'pre_comp->points' is an array of multiples of the generator
- * of the following form:
- * points[0] = generator;
- * points[1] = 3 * generator;
- * ...
- * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
- * points[2^(w-1)] = 2^blocksize * generator;
- * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
- * ...
- * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
- * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
- * ...
- * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
- * points[2^(w-1)*numblocks] = NULL
- */
- int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
- {
- const EC_POINT *generator;
- EC_POINT *tmp_point = NULL, *base = NULL, **var;
- BN_CTX *new_ctx = NULL;
- const BIGNUM *order;
- size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
- EC_POINT **points = NULL;
- EC_PRE_COMP *pre_comp;
- int ret = 0;
- /* if there is an old EC_PRE_COMP object, throw it away */
- EC_pre_comp_free(group);
- if ((pre_comp = ec_pre_comp_new(group)) == NULL)
- return 0;
- generator = EC_GROUP_get0_generator(group);
- if (generator == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
- goto err;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- goto err;
- }
- BN_CTX_start(ctx);
- order = EC_GROUP_get0_order(group);
- if (order == NULL)
- goto err;
- if (BN_is_zero(order)) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
- goto err;
- }
- bits = BN_num_bits(order);
- /*
- * The following parameters mean we precompute (approximately) one point
- * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
- * bit lengths, other parameter combinations might provide better
- * efficiency.
- */
- blocksize = 8;
- w = 4;
- if (EC_window_bits_for_scalar_size(bits) > w) {
- /* let's not make the window too small ... */
- w = EC_window_bits_for_scalar_size(bits);
- }
- numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
- * to use for wNAF
- * splitting */
- pre_points_per_block = (size_t)1 << (w - 1);
- num = pre_points_per_block * numblocks; /* number of points to compute
- * and store */
- points = OPENSSL_malloc(sizeof(*points) * (num + 1));
- if (points == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- var = points;
- var[num] = NULL; /* pivot */
- for (i = 0; i < num; i++) {
- if ((var[i] = EC_POINT_new(group)) == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- if ((tmp_point = EC_POINT_new(group)) == NULL
- || (base = EC_POINT_new(group)) == NULL) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (!EC_POINT_copy(base, generator))
- goto err;
- /* do the precomputation */
- for (i = 0; i < numblocks; i++) {
- size_t j;
- if (!EC_POINT_dbl(group, tmp_point, base, ctx))
- goto err;
- if (!EC_POINT_copy(*var++, base))
- goto err;
- for (j = 1; j < pre_points_per_block; j++, var++) {
- /*
- * calculate odd multiples of the current base point
- */
- if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
- goto err;
- }
- if (i < numblocks - 1) {
- /*
- * get the next base (multiply current one by 2^blocksize)
- */
- size_t k;
- if (blocksize <= 2) {
- ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- if (!EC_POINT_dbl(group, base, tmp_point, ctx))
- goto err;
- for (k = 2; k < blocksize; k++) {
- if (!EC_POINT_dbl(group, base, base, ctx))
- goto err;
- }
- }
- }
- if (!EC_POINTs_make_affine(group, num, points, ctx))
- goto err;
- pre_comp->group = group;
- pre_comp->blocksize = blocksize;
- pre_comp->numblocks = numblocks;
- pre_comp->w = w;
- pre_comp->points = points;
- points = NULL;
- pre_comp->num = num;
- SETPRECOMP(group, ec, pre_comp);
- pre_comp = NULL;
- ret = 1;
- err:
- if (ctx != NULL)
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- EC_ec_pre_comp_free(pre_comp);
- if (points) {
- EC_POINT **p;
- for (p = points; *p != NULL; p++)
- EC_POINT_free(*p);
- OPENSSL_free(points);
- }
- EC_POINT_free(tmp_point);
- EC_POINT_free(base);
- return ret;
- }
- int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
- {
- return HAVEPRECOMP(group, ec);
- }
|