gcm128.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676
  1. /*
  2. * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/crypto.h>
  10. #include "modes_lcl.h"
  11. #include <string.h>
  12. #if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
  13. /* redefine, because alignment is ensured */
  14. # undef GETU32
  15. # define GETU32(p) BSWAP4(*(const u32 *)(p))
  16. # undef PUTU32
  17. # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
  18. #endif
  19. #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
  20. #define REDUCE1BIT(V) do { \
  21. if (sizeof(size_t)==8) { \
  22. u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
  23. V.lo = (V.hi<<63)|(V.lo>>1); \
  24. V.hi = (V.hi>>1 )^T; \
  25. } \
  26. else { \
  27. u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
  28. V.lo = (V.hi<<63)|(V.lo>>1); \
  29. V.hi = (V.hi>>1 )^((u64)T<<32); \
  30. } \
  31. } while(0)
  32. /*-
  33. * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
  34. * never be set to 8. 8 is effectively reserved for testing purposes.
  35. * TABLE_BITS>1 are lookup-table-driven implementations referred to as
  36. * "Shoup's" in GCM specification. In other words OpenSSL does not cover
  37. * whole spectrum of possible table driven implementations. Why? In
  38. * non-"Shoup's" case memory access pattern is segmented in such manner,
  39. * that it's trivial to see that cache timing information can reveal
  40. * fair portion of intermediate hash value. Given that ciphertext is
  41. * always available to attacker, it's possible for him to attempt to
  42. * deduce secret parameter H and if successful, tamper with messages
  43. * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
  44. * not as trivial, but there is no reason to believe that it's resistant
  45. * to cache-timing attack. And the thing about "8-bit" implementation is
  46. * that it consumes 16 (sixteen) times more memory, 4KB per individual
  47. * key + 1KB shared. Well, on pros side it should be twice as fast as
  48. * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
  49. * was observed to run ~75% faster, closer to 100% for commercial
  50. * compilers... Yet "4-bit" procedure is preferred, because it's
  51. * believed to provide better security-performance balance and adequate
  52. * all-round performance. "All-round" refers to things like:
  53. *
  54. * - shorter setup time effectively improves overall timing for
  55. * handling short messages;
  56. * - larger table allocation can become unbearable because of VM
  57. * subsystem penalties (for example on Windows large enough free
  58. * results in VM working set trimming, meaning that consequent
  59. * malloc would immediately incur working set expansion);
  60. * - larger table has larger cache footprint, which can affect
  61. * performance of other code paths (not necessarily even from same
  62. * thread in Hyper-Threading world);
  63. *
  64. * Value of 1 is not appropriate for performance reasons.
  65. */
  66. #if TABLE_BITS==8
  67. static void gcm_init_8bit(u128 Htable[256], u64 H[2])
  68. {
  69. int i, j;
  70. u128 V;
  71. Htable[0].hi = 0;
  72. Htable[0].lo = 0;
  73. V.hi = H[0];
  74. V.lo = H[1];
  75. for (Htable[128] = V, i = 64; i > 0; i >>= 1) {
  76. REDUCE1BIT(V);
  77. Htable[i] = V;
  78. }
  79. for (i = 2; i < 256; i <<= 1) {
  80. u128 *Hi = Htable + i, H0 = *Hi;
  81. for (j = 1; j < i; ++j) {
  82. Hi[j].hi = H0.hi ^ Htable[j].hi;
  83. Hi[j].lo = H0.lo ^ Htable[j].lo;
  84. }
  85. }
  86. }
  87. static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256])
  88. {
  89. u128 Z = { 0, 0 };
  90. const u8 *xi = (const u8 *)Xi + 15;
  91. size_t rem, n = *xi;
  92. const union {
  93. long one;
  94. char little;
  95. } is_endian = { 1 };
  96. static const size_t rem_8bit[256] = {
  97. PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246),
  98. PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E),
  99. PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56),
  100. PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E),
  101. PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66),
  102. PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E),
  103. PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076),
  104. PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E),
  105. PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06),
  106. PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E),
  107. PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416),
  108. PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E),
  109. PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626),
  110. PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E),
  111. PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836),
  112. PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E),
  113. PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6),
  114. PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE),
  115. PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6),
  116. PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE),
  117. PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6),
  118. PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE),
  119. PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6),
  120. PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE),
  121. PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86),
  122. PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E),
  123. PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496),
  124. PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E),
  125. PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6),
  126. PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE),
  127. PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6),
  128. PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE),
  129. PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346),
  130. PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E),
  131. PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56),
  132. PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E),
  133. PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66),
  134. PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E),
  135. PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176),
  136. PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E),
  137. PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06),
  138. PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E),
  139. PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516),
  140. PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E),
  141. PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726),
  142. PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E),
  143. PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936),
  144. PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E),
  145. PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6),
  146. PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE),
  147. PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6),
  148. PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE),
  149. PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6),
  150. PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE),
  151. PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6),
  152. PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE),
  153. PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86),
  154. PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E),
  155. PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596),
  156. PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E),
  157. PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6),
  158. PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE),
  159. PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6),
  160. PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE)
  161. };
  162. while (1) {
  163. Z.hi ^= Htable[n].hi;
  164. Z.lo ^= Htable[n].lo;
  165. if ((u8 *)Xi == xi)
  166. break;
  167. n = *(--xi);
  168. rem = (size_t)Z.lo & 0xff;
  169. Z.lo = (Z.hi << 56) | (Z.lo >> 8);
  170. Z.hi = (Z.hi >> 8);
  171. if (sizeof(size_t) == 8)
  172. Z.hi ^= rem_8bit[rem];
  173. else
  174. Z.hi ^= (u64)rem_8bit[rem] << 32;
  175. }
  176. if (is_endian.little) {
  177. # ifdef BSWAP8
  178. Xi[0] = BSWAP8(Z.hi);
  179. Xi[1] = BSWAP8(Z.lo);
  180. # else
  181. u8 *p = (u8 *)Xi;
  182. u32 v;
  183. v = (u32)(Z.hi >> 32);
  184. PUTU32(p, v);
  185. v = (u32)(Z.hi);
  186. PUTU32(p + 4, v);
  187. v = (u32)(Z.lo >> 32);
  188. PUTU32(p + 8, v);
  189. v = (u32)(Z.lo);
  190. PUTU32(p + 12, v);
  191. # endif
  192. } else {
  193. Xi[0] = Z.hi;
  194. Xi[1] = Z.lo;
  195. }
  196. }
  197. # define GCM_MUL(ctx) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable)
  198. #elif TABLE_BITS==4
  199. static void gcm_init_4bit(u128 Htable[16], u64 H[2])
  200. {
  201. u128 V;
  202. # if defined(OPENSSL_SMALL_FOOTPRINT)
  203. int i;
  204. # endif
  205. Htable[0].hi = 0;
  206. Htable[0].lo = 0;
  207. V.hi = H[0];
  208. V.lo = H[1];
  209. # if defined(OPENSSL_SMALL_FOOTPRINT)
  210. for (Htable[8] = V, i = 4; i > 0; i >>= 1) {
  211. REDUCE1BIT(V);
  212. Htable[i] = V;
  213. }
  214. for (i = 2; i < 16; i <<= 1) {
  215. u128 *Hi = Htable + i;
  216. int j;
  217. for (V = *Hi, j = 1; j < i; ++j) {
  218. Hi[j].hi = V.hi ^ Htable[j].hi;
  219. Hi[j].lo = V.lo ^ Htable[j].lo;
  220. }
  221. }
  222. # else
  223. Htable[8] = V;
  224. REDUCE1BIT(V);
  225. Htable[4] = V;
  226. REDUCE1BIT(V);
  227. Htable[2] = V;
  228. REDUCE1BIT(V);
  229. Htable[1] = V;
  230. Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
  231. V = Htable[4];
  232. Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
  233. Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
  234. Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
  235. V = Htable[8];
  236. Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
  237. Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
  238. Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
  239. Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
  240. Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
  241. Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
  242. Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
  243. # endif
  244. # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
  245. /*
  246. * ARM assembler expects specific dword order in Htable.
  247. */
  248. {
  249. int j;
  250. const union {
  251. long one;
  252. char little;
  253. } is_endian = { 1 };
  254. if (is_endian.little)
  255. for (j = 0; j < 16; ++j) {
  256. V = Htable[j];
  257. Htable[j].hi = V.lo;
  258. Htable[j].lo = V.hi;
  259. } else
  260. for (j = 0; j < 16; ++j) {
  261. V = Htable[j];
  262. Htable[j].hi = V.lo << 32 | V.lo >> 32;
  263. Htable[j].lo = V.hi << 32 | V.hi >> 32;
  264. }
  265. }
  266. # endif
  267. }
  268. # ifndef GHASH_ASM
  269. static const size_t rem_4bit[16] = {
  270. PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
  271. PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
  272. PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
  273. PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)
  274. };
  275. static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
  276. {
  277. u128 Z;
  278. int cnt = 15;
  279. size_t rem, nlo, nhi;
  280. const union {
  281. long one;
  282. char little;
  283. } is_endian = { 1 };
  284. nlo = ((const u8 *)Xi)[15];
  285. nhi = nlo >> 4;
  286. nlo &= 0xf;
  287. Z.hi = Htable[nlo].hi;
  288. Z.lo = Htable[nlo].lo;
  289. while (1) {
  290. rem = (size_t)Z.lo & 0xf;
  291. Z.lo = (Z.hi << 60) | (Z.lo >> 4);
  292. Z.hi = (Z.hi >> 4);
  293. if (sizeof(size_t) == 8)
  294. Z.hi ^= rem_4bit[rem];
  295. else
  296. Z.hi ^= (u64)rem_4bit[rem] << 32;
  297. Z.hi ^= Htable[nhi].hi;
  298. Z.lo ^= Htable[nhi].lo;
  299. if (--cnt < 0)
  300. break;
  301. nlo = ((const u8 *)Xi)[cnt];
  302. nhi = nlo >> 4;
  303. nlo &= 0xf;
  304. rem = (size_t)Z.lo & 0xf;
  305. Z.lo = (Z.hi << 60) | (Z.lo >> 4);
  306. Z.hi = (Z.hi >> 4);
  307. if (sizeof(size_t) == 8)
  308. Z.hi ^= rem_4bit[rem];
  309. else
  310. Z.hi ^= (u64)rem_4bit[rem] << 32;
  311. Z.hi ^= Htable[nlo].hi;
  312. Z.lo ^= Htable[nlo].lo;
  313. }
  314. if (is_endian.little) {
  315. # ifdef BSWAP8
  316. Xi[0] = BSWAP8(Z.hi);
  317. Xi[1] = BSWAP8(Z.lo);
  318. # else
  319. u8 *p = (u8 *)Xi;
  320. u32 v;
  321. v = (u32)(Z.hi >> 32);
  322. PUTU32(p, v);
  323. v = (u32)(Z.hi);
  324. PUTU32(p + 4, v);
  325. v = (u32)(Z.lo >> 32);
  326. PUTU32(p + 8, v);
  327. v = (u32)(Z.lo);
  328. PUTU32(p + 12, v);
  329. # endif
  330. } else {
  331. Xi[0] = Z.hi;
  332. Xi[1] = Z.lo;
  333. }
  334. }
  335. # if !defined(OPENSSL_SMALL_FOOTPRINT)
  336. /*
  337. * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
  338. * details... Compiler-generated code doesn't seem to give any
  339. * performance improvement, at least not on x86[_64]. It's here
  340. * mostly as reference and a placeholder for possible future
  341. * non-trivial optimization[s]...
  342. */
  343. static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],
  344. const u8 *inp, size_t len)
  345. {
  346. u128 Z;
  347. int cnt;
  348. size_t rem, nlo, nhi;
  349. const union {
  350. long one;
  351. char little;
  352. } is_endian = { 1 };
  353. # if 1
  354. do {
  355. cnt = 15;
  356. nlo = ((const u8 *)Xi)[15];
  357. nlo ^= inp[15];
  358. nhi = nlo >> 4;
  359. nlo &= 0xf;
  360. Z.hi = Htable[nlo].hi;
  361. Z.lo = Htable[nlo].lo;
  362. while (1) {
  363. rem = (size_t)Z.lo & 0xf;
  364. Z.lo = (Z.hi << 60) | (Z.lo >> 4);
  365. Z.hi = (Z.hi >> 4);
  366. if (sizeof(size_t) == 8)
  367. Z.hi ^= rem_4bit[rem];
  368. else
  369. Z.hi ^= (u64)rem_4bit[rem] << 32;
  370. Z.hi ^= Htable[nhi].hi;
  371. Z.lo ^= Htable[nhi].lo;
  372. if (--cnt < 0)
  373. break;
  374. nlo = ((const u8 *)Xi)[cnt];
  375. nlo ^= inp[cnt];
  376. nhi = nlo >> 4;
  377. nlo &= 0xf;
  378. rem = (size_t)Z.lo & 0xf;
  379. Z.lo = (Z.hi << 60) | (Z.lo >> 4);
  380. Z.hi = (Z.hi >> 4);
  381. if (sizeof(size_t) == 8)
  382. Z.hi ^= rem_4bit[rem];
  383. else
  384. Z.hi ^= (u64)rem_4bit[rem] << 32;
  385. Z.hi ^= Htable[nlo].hi;
  386. Z.lo ^= Htable[nlo].lo;
  387. }
  388. # else
  389. /*
  390. * Extra 256+16 bytes per-key plus 512 bytes shared tables
  391. * [should] give ~50% improvement... One could have PACK()-ed
  392. * the rem_8bit even here, but the priority is to minimize
  393. * cache footprint...
  394. */
  395. u128 Hshr4[16]; /* Htable shifted right by 4 bits */
  396. u8 Hshl4[16]; /* Htable shifted left by 4 bits */
  397. static const unsigned short rem_8bit[256] = {
  398. 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E,
  399. 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E,
  400. 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E,
  401. 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E,
  402. 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E,
  403. 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E,
  404. 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E,
  405. 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E,
  406. 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
  407. 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE,
  408. 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE,
  409. 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE,
  410. 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E,
  411. 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E,
  412. 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE,
  413. 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE,
  414. 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E,
  415. 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
  416. 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E,
  417. 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E,
  418. 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E,
  419. 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E,
  420. 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E,
  421. 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E,
  422. 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE,
  423. 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE,
  424. 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
  425. 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE,
  426. 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E,
  427. 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E,
  428. 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE,
  429. 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE
  430. };
  431. /*
  432. * This pre-processing phase slows down procedure by approximately
  433. * same time as it makes each loop spin faster. In other words
  434. * single block performance is approximately same as straightforward
  435. * "4-bit" implementation, and then it goes only faster...
  436. */
  437. for (cnt = 0; cnt < 16; ++cnt) {
  438. Z.hi = Htable[cnt].hi;
  439. Z.lo = Htable[cnt].lo;
  440. Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4);
  441. Hshr4[cnt].hi = (Z.hi >> 4);
  442. Hshl4[cnt] = (u8)(Z.lo << 4);
  443. }
  444. do {
  445. for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) {
  446. nlo = ((const u8 *)Xi)[cnt];
  447. nlo ^= inp[cnt];
  448. nhi = nlo >> 4;
  449. nlo &= 0xf;
  450. Z.hi ^= Htable[nlo].hi;
  451. Z.lo ^= Htable[nlo].lo;
  452. rem = (size_t)Z.lo & 0xff;
  453. Z.lo = (Z.hi << 56) | (Z.lo >> 8);
  454. Z.hi = (Z.hi >> 8);
  455. Z.hi ^= Hshr4[nhi].hi;
  456. Z.lo ^= Hshr4[nhi].lo;
  457. Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48;
  458. }
  459. nlo = ((const u8 *)Xi)[0];
  460. nlo ^= inp[0];
  461. nhi = nlo >> 4;
  462. nlo &= 0xf;
  463. Z.hi ^= Htable[nlo].hi;
  464. Z.lo ^= Htable[nlo].lo;
  465. rem = (size_t)Z.lo & 0xf;
  466. Z.lo = (Z.hi << 60) | (Z.lo >> 4);
  467. Z.hi = (Z.hi >> 4);
  468. Z.hi ^= Htable[nhi].hi;
  469. Z.lo ^= Htable[nhi].lo;
  470. Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48;
  471. # endif
  472. if (is_endian.little) {
  473. # ifdef BSWAP8
  474. Xi[0] = BSWAP8(Z.hi);
  475. Xi[1] = BSWAP8(Z.lo);
  476. # else
  477. u8 *p = (u8 *)Xi;
  478. u32 v;
  479. v = (u32)(Z.hi >> 32);
  480. PUTU32(p, v);
  481. v = (u32)(Z.hi);
  482. PUTU32(p + 4, v);
  483. v = (u32)(Z.lo >> 32);
  484. PUTU32(p + 8, v);
  485. v = (u32)(Z.lo);
  486. PUTU32(p + 12, v);
  487. # endif
  488. } else {
  489. Xi[0] = Z.hi;
  490. Xi[1] = Z.lo;
  491. }
  492. } while (inp += 16, len -= 16);
  493. }
  494. # endif
  495. # else
  496. void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]);
  497. void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  498. size_t len);
  499. # endif
  500. # define GCM_MUL(ctx) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
  501. # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
  502. # define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
  503. /*
  504. * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing
  505. * effect. In other words idea is to hash data while it's still in L1 cache
  506. * after encryption pass...
  507. */
  508. # define GHASH_CHUNK (3*1024)
  509. # endif
  510. #else /* TABLE_BITS */
  511. static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2])
  512. {
  513. u128 V, Z = { 0, 0 };
  514. long X;
  515. int i, j;
  516. const long *xi = (const long *)Xi;
  517. const union {
  518. long one;
  519. char little;
  520. } is_endian = { 1 };
  521. V.hi = H[0]; /* H is in host byte order, no byte swapping */
  522. V.lo = H[1];
  523. for (j = 0; j < 16 / sizeof(long); ++j) {
  524. if (is_endian.little) {
  525. if (sizeof(long) == 8) {
  526. # ifdef BSWAP8
  527. X = (long)(BSWAP8(xi[j]));
  528. # else
  529. const u8 *p = (const u8 *)(xi + j);
  530. X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4));
  531. # endif
  532. } else {
  533. const u8 *p = (const u8 *)(xi + j);
  534. X = (long)GETU32(p);
  535. }
  536. } else
  537. X = xi[j];
  538. for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) {
  539. u64 M = (u64)(X >> (8 * sizeof(long) - 1));
  540. Z.hi ^= V.hi & M;
  541. Z.lo ^= V.lo & M;
  542. REDUCE1BIT(V);
  543. }
  544. }
  545. if (is_endian.little) {
  546. # ifdef BSWAP8
  547. Xi[0] = BSWAP8(Z.hi);
  548. Xi[1] = BSWAP8(Z.lo);
  549. # else
  550. u8 *p = (u8 *)Xi;
  551. u32 v;
  552. v = (u32)(Z.hi >> 32);
  553. PUTU32(p, v);
  554. v = (u32)(Z.hi);
  555. PUTU32(p + 4, v);
  556. v = (u32)(Z.lo >> 32);
  557. PUTU32(p + 8, v);
  558. v = (u32)(Z.lo);
  559. PUTU32(p + 12, v);
  560. # endif
  561. } else {
  562. Xi[0] = Z.hi;
  563. Xi[1] = Z.lo;
  564. }
  565. }
  566. # define GCM_MUL(ctx) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u)
  567. #endif
  568. #if TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ))
  569. # if !defined(I386_ONLY) && \
  570. (defined(__i386) || defined(__i386__) || \
  571. defined(__x86_64) || defined(__x86_64__) || \
  572. defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
  573. # define GHASH_ASM_X86_OR_64
  574. # define GCM_FUNCREF_4BIT
  575. extern unsigned int OPENSSL_ia32cap_P[];
  576. void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]);
  577. void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]);
  578. void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  579. size_t len);
  580. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  581. # define gcm_init_avx gcm_init_clmul
  582. # define gcm_gmult_avx gcm_gmult_clmul
  583. # define gcm_ghash_avx gcm_ghash_clmul
  584. # else
  585. void gcm_init_avx(u128 Htable[16], const u64 Xi[2]);
  586. void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]);
  587. void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  588. size_t len);
  589. # endif
  590. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  591. # define GHASH_ASM_X86
  592. void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]);
  593. void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  594. size_t len);
  595. void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]);
  596. void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  597. size_t len);
  598. # endif
  599. # elif defined(__arm__) || defined(__arm) || defined(__aarch64__)
  600. # include "arm_arch.h"
  601. # if __ARM_MAX_ARCH__>=7
  602. # define GHASH_ASM_ARM
  603. # define GCM_FUNCREF_4BIT
  604. # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL)
  605. # if defined(__arm__) || defined(__arm)
  606. # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  607. # endif
  608. void gcm_init_neon(u128 Htable[16], const u64 Xi[2]);
  609. void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]);
  610. void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  611. size_t len);
  612. void gcm_init_v8(u128 Htable[16], const u64 Xi[2]);
  613. void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]);
  614. void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  615. size_t len);
  616. # endif
  617. # elif defined(__sparc__) || defined(__sparc)
  618. # include "sparc_arch.h"
  619. # define GHASH_ASM_SPARC
  620. # define GCM_FUNCREF_4BIT
  621. extern unsigned int OPENSSL_sparcv9cap_P[];
  622. void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]);
  623. void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]);
  624. void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  625. size_t len);
  626. # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
  627. # include "ppc_arch.h"
  628. # define GHASH_ASM_PPC
  629. # define GCM_FUNCREF_4BIT
  630. void gcm_init_p8(u128 Htable[16], const u64 Xi[2]);
  631. void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]);
  632. void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
  633. size_t len);
  634. # endif
  635. #endif
  636. #ifdef GCM_FUNCREF_4BIT
  637. # undef GCM_MUL
  638. # define GCM_MUL(ctx) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable)
  639. # ifdef GHASH
  640. # undef GHASH
  641. # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len)
  642. # endif
  643. #endif
  644. void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block)
  645. {
  646. const union {
  647. long one;
  648. char little;
  649. } is_endian = { 1 };
  650. memset(ctx, 0, sizeof(*ctx));
  651. ctx->block = block;
  652. ctx->key = key;
  653. (*block) (ctx->H.c, ctx->H.c, key);
  654. if (is_endian.little) {
  655. /* H is stored in host byte order */
  656. #ifdef BSWAP8
  657. ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
  658. ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
  659. #else
  660. u8 *p = ctx->H.c;
  661. u64 hi, lo;
  662. hi = (u64)GETU32(p) << 32 | GETU32(p + 4);
  663. lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
  664. ctx->H.u[0] = hi;
  665. ctx->H.u[1] = lo;
  666. #endif
  667. }
  668. #if TABLE_BITS==8
  669. gcm_init_8bit(ctx->Htable, ctx->H.u);
  670. #elif TABLE_BITS==4
  671. # if defined(GHASH)
  672. # define CTX__GHASH(f) (ctx->ghash = (f))
  673. # else
  674. # define CTX__GHASH(f) (ctx->ghash = NULL)
  675. # endif
  676. # if defined(GHASH_ASM_X86_OR_64)
  677. # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
  678. if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */
  679. if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */
  680. gcm_init_avx(ctx->Htable, ctx->H.u);
  681. ctx->gmult = gcm_gmult_avx;
  682. CTX__GHASH(gcm_ghash_avx);
  683. } else {
  684. gcm_init_clmul(ctx->Htable, ctx->H.u);
  685. ctx->gmult = gcm_gmult_clmul;
  686. CTX__GHASH(gcm_ghash_clmul);
  687. }
  688. return;
  689. }
  690. # endif
  691. gcm_init_4bit(ctx->Htable, ctx->H.u);
  692. # if defined(GHASH_ASM_X86) /* x86 only */
  693. # if defined(OPENSSL_IA32_SSE2)
  694. if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
  695. # else
  696. if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */
  697. # endif
  698. ctx->gmult = gcm_gmult_4bit_mmx;
  699. CTX__GHASH(gcm_ghash_4bit_mmx);
  700. } else {
  701. ctx->gmult = gcm_gmult_4bit_x86;
  702. CTX__GHASH(gcm_ghash_4bit_x86);
  703. }
  704. # else
  705. ctx->gmult = gcm_gmult_4bit;
  706. CTX__GHASH(gcm_ghash_4bit);
  707. # endif
  708. # elif defined(GHASH_ASM_ARM)
  709. # ifdef PMULL_CAPABLE
  710. if (PMULL_CAPABLE) {
  711. gcm_init_v8(ctx->Htable, ctx->H.u);
  712. ctx->gmult = gcm_gmult_v8;
  713. CTX__GHASH(gcm_ghash_v8);
  714. } else
  715. # endif
  716. # ifdef NEON_CAPABLE
  717. if (NEON_CAPABLE) {
  718. gcm_init_neon(ctx->Htable, ctx->H.u);
  719. ctx->gmult = gcm_gmult_neon;
  720. CTX__GHASH(gcm_ghash_neon);
  721. } else
  722. # endif
  723. {
  724. gcm_init_4bit(ctx->Htable, ctx->H.u);
  725. ctx->gmult = gcm_gmult_4bit;
  726. CTX__GHASH(gcm_ghash_4bit);
  727. }
  728. # elif defined(GHASH_ASM_SPARC)
  729. if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) {
  730. gcm_init_vis3(ctx->Htable, ctx->H.u);
  731. ctx->gmult = gcm_gmult_vis3;
  732. CTX__GHASH(gcm_ghash_vis3);
  733. } else {
  734. gcm_init_4bit(ctx->Htable, ctx->H.u);
  735. ctx->gmult = gcm_gmult_4bit;
  736. CTX__GHASH(gcm_ghash_4bit);
  737. }
  738. # elif defined(GHASH_ASM_PPC)
  739. if (OPENSSL_ppccap_P & PPC_CRYPTO207) {
  740. gcm_init_p8(ctx->Htable, ctx->H.u);
  741. ctx->gmult = gcm_gmult_p8;
  742. CTX__GHASH(gcm_ghash_p8);
  743. } else {
  744. gcm_init_4bit(ctx->Htable, ctx->H.u);
  745. ctx->gmult = gcm_gmult_4bit;
  746. CTX__GHASH(gcm_ghash_4bit);
  747. }
  748. # else
  749. gcm_init_4bit(ctx->Htable, ctx->H.u);
  750. # endif
  751. # undef CTX__GHASH
  752. #endif
  753. }
  754. void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,
  755. size_t len)
  756. {
  757. const union {
  758. long one;
  759. char little;
  760. } is_endian = { 1 };
  761. unsigned int ctr;
  762. #ifdef GCM_FUNCREF_4BIT
  763. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  764. #endif
  765. ctx->len.u[0] = 0; /* AAD length */
  766. ctx->len.u[1] = 0; /* message length */
  767. ctx->ares = 0;
  768. ctx->mres = 0;
  769. if (len == 12) {
  770. memcpy(ctx->Yi.c, iv, 12);
  771. ctx->Yi.c[12] = 0;
  772. ctx->Yi.c[13] = 0;
  773. ctx->Yi.c[14] = 0;
  774. ctx->Yi.c[15] = 1;
  775. ctr = 1;
  776. } else {
  777. size_t i;
  778. u64 len0 = len;
  779. /* Borrow ctx->Xi to calculate initial Yi */
  780. ctx->Xi.u[0] = 0;
  781. ctx->Xi.u[1] = 0;
  782. while (len >= 16) {
  783. for (i = 0; i < 16; ++i)
  784. ctx->Xi.c[i] ^= iv[i];
  785. GCM_MUL(ctx);
  786. iv += 16;
  787. len -= 16;
  788. }
  789. if (len) {
  790. for (i = 0; i < len; ++i)
  791. ctx->Xi.c[i] ^= iv[i];
  792. GCM_MUL(ctx);
  793. }
  794. len0 <<= 3;
  795. if (is_endian.little) {
  796. #ifdef BSWAP8
  797. ctx->Xi.u[1] ^= BSWAP8(len0);
  798. #else
  799. ctx->Xi.c[8] ^= (u8)(len0 >> 56);
  800. ctx->Xi.c[9] ^= (u8)(len0 >> 48);
  801. ctx->Xi.c[10] ^= (u8)(len0 >> 40);
  802. ctx->Xi.c[11] ^= (u8)(len0 >> 32);
  803. ctx->Xi.c[12] ^= (u8)(len0 >> 24);
  804. ctx->Xi.c[13] ^= (u8)(len0 >> 16);
  805. ctx->Xi.c[14] ^= (u8)(len0 >> 8);
  806. ctx->Xi.c[15] ^= (u8)(len0);
  807. #endif
  808. } else {
  809. ctx->Xi.u[1] ^= len0;
  810. }
  811. GCM_MUL(ctx);
  812. if (is_endian.little)
  813. #ifdef BSWAP4
  814. ctr = BSWAP4(ctx->Xi.d[3]);
  815. #else
  816. ctr = GETU32(ctx->Xi.c + 12);
  817. #endif
  818. else
  819. ctr = ctx->Xi.d[3];
  820. /* Copy borrowed Xi to Yi */
  821. ctx->Yi.u[0] = ctx->Xi.u[0];
  822. ctx->Yi.u[1] = ctx->Xi.u[1];
  823. }
  824. ctx->Xi.u[0] = 0;
  825. ctx->Xi.u[1] = 0;
  826. (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key);
  827. ++ctr;
  828. if (is_endian.little)
  829. #ifdef BSWAP4
  830. ctx->Yi.d[3] = BSWAP4(ctr);
  831. #else
  832. PUTU32(ctx->Yi.c + 12, ctr);
  833. #endif
  834. else
  835. ctx->Yi.d[3] = ctr;
  836. }
  837. int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,
  838. size_t len)
  839. {
  840. size_t i;
  841. unsigned int n;
  842. u64 alen = ctx->len.u[0];
  843. #ifdef GCM_FUNCREF_4BIT
  844. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  845. # ifdef GHASH
  846. void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
  847. const u8 *inp, size_t len) = ctx->ghash;
  848. # endif
  849. #endif
  850. if (ctx->len.u[1])
  851. return -2;
  852. alen += len;
  853. if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
  854. return -1;
  855. ctx->len.u[0] = alen;
  856. n = ctx->ares;
  857. if (n) {
  858. while (n && len) {
  859. ctx->Xi.c[n] ^= *(aad++);
  860. --len;
  861. n = (n + 1) % 16;
  862. }
  863. if (n == 0)
  864. GCM_MUL(ctx);
  865. else {
  866. ctx->ares = n;
  867. return 0;
  868. }
  869. }
  870. #ifdef GHASH
  871. if ((i = (len & (size_t)-16))) {
  872. GHASH(ctx, aad, i);
  873. aad += i;
  874. len -= i;
  875. }
  876. #else
  877. while (len >= 16) {
  878. for (i = 0; i < 16; ++i)
  879. ctx->Xi.c[i] ^= aad[i];
  880. GCM_MUL(ctx);
  881. aad += 16;
  882. len -= 16;
  883. }
  884. #endif
  885. if (len) {
  886. n = (unsigned int)len;
  887. for (i = 0; i < len; ++i)
  888. ctx->Xi.c[i] ^= aad[i];
  889. }
  890. ctx->ares = n;
  891. return 0;
  892. }
  893. int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
  894. const unsigned char *in, unsigned char *out,
  895. size_t len)
  896. {
  897. const union {
  898. long one;
  899. char little;
  900. } is_endian = { 1 };
  901. unsigned int n, ctr;
  902. size_t i;
  903. u64 mlen = ctx->len.u[1];
  904. block128_f block = ctx->block;
  905. void *key = ctx->key;
  906. #ifdef GCM_FUNCREF_4BIT
  907. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  908. # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
  909. void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
  910. const u8 *inp, size_t len) = ctx->ghash;
  911. # endif
  912. #endif
  913. mlen += len;
  914. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  915. return -1;
  916. ctx->len.u[1] = mlen;
  917. if (ctx->ares) {
  918. /* First call to encrypt finalizes GHASH(AAD) */
  919. GCM_MUL(ctx);
  920. ctx->ares = 0;
  921. }
  922. if (is_endian.little)
  923. #ifdef BSWAP4
  924. ctr = BSWAP4(ctx->Yi.d[3]);
  925. #else
  926. ctr = GETU32(ctx->Yi.c + 12);
  927. #endif
  928. else
  929. ctr = ctx->Yi.d[3];
  930. n = ctx->mres;
  931. #if !defined(OPENSSL_SMALL_FOOTPRINT)
  932. if (16 % sizeof(size_t) == 0) { /* always true actually */
  933. do {
  934. if (n) {
  935. while (n && len) {
  936. ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
  937. --len;
  938. n = (n + 1) % 16;
  939. }
  940. if (n == 0)
  941. GCM_MUL(ctx);
  942. else {
  943. ctx->mres = n;
  944. return 0;
  945. }
  946. }
  947. # if defined(STRICT_ALIGNMENT)
  948. if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
  949. break;
  950. # endif
  951. # if defined(GHASH)
  952. # if defined(GHASH_CHUNK)
  953. while (len >= GHASH_CHUNK) {
  954. size_t j = GHASH_CHUNK;
  955. while (j) {
  956. size_t *out_t = (size_t *)out;
  957. const size_t *in_t = (const size_t *)in;
  958. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  959. ++ctr;
  960. if (is_endian.little)
  961. # ifdef BSWAP4
  962. ctx->Yi.d[3] = BSWAP4(ctr);
  963. # else
  964. PUTU32(ctx->Yi.c + 12, ctr);
  965. # endif
  966. else
  967. ctx->Yi.d[3] = ctr;
  968. for (i = 0; i < 16 / sizeof(size_t); ++i)
  969. out_t[i] = in_t[i] ^ ctx->EKi.t[i];
  970. out += 16;
  971. in += 16;
  972. j -= 16;
  973. }
  974. GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
  975. len -= GHASH_CHUNK;
  976. }
  977. # endif
  978. if ((i = (len & (size_t)-16))) {
  979. size_t j = i;
  980. while (len >= 16) {
  981. size_t *out_t = (size_t *)out;
  982. const size_t *in_t = (const size_t *)in;
  983. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  984. ++ctr;
  985. if (is_endian.little)
  986. # ifdef BSWAP4
  987. ctx->Yi.d[3] = BSWAP4(ctr);
  988. # else
  989. PUTU32(ctx->Yi.c + 12, ctr);
  990. # endif
  991. else
  992. ctx->Yi.d[3] = ctr;
  993. for (i = 0; i < 16 / sizeof(size_t); ++i)
  994. out_t[i] = in_t[i] ^ ctx->EKi.t[i];
  995. out += 16;
  996. in += 16;
  997. len -= 16;
  998. }
  999. GHASH(ctx, out - j, j);
  1000. }
  1001. # else
  1002. while (len >= 16) {
  1003. size_t *out_t = (size_t *)out;
  1004. const size_t *in_t = (const size_t *)in;
  1005. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1006. ++ctr;
  1007. if (is_endian.little)
  1008. # ifdef BSWAP4
  1009. ctx->Yi.d[3] = BSWAP4(ctr);
  1010. # else
  1011. PUTU32(ctx->Yi.c + 12, ctr);
  1012. # endif
  1013. else
  1014. ctx->Yi.d[3] = ctr;
  1015. for (i = 0; i < 16 / sizeof(size_t); ++i)
  1016. ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];
  1017. GCM_MUL(ctx);
  1018. out += 16;
  1019. in += 16;
  1020. len -= 16;
  1021. }
  1022. # endif
  1023. if (len) {
  1024. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1025. ++ctr;
  1026. if (is_endian.little)
  1027. # ifdef BSWAP4
  1028. ctx->Yi.d[3] = BSWAP4(ctr);
  1029. # else
  1030. PUTU32(ctx->Yi.c + 12, ctr);
  1031. # endif
  1032. else
  1033. ctx->Yi.d[3] = ctr;
  1034. while (len--) {
  1035. ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
  1036. ++n;
  1037. }
  1038. }
  1039. ctx->mres = n;
  1040. return 0;
  1041. } while (0);
  1042. }
  1043. #endif
  1044. for (i = 0; i < len; ++i) {
  1045. if (n == 0) {
  1046. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1047. ++ctr;
  1048. if (is_endian.little)
  1049. #ifdef BSWAP4
  1050. ctx->Yi.d[3] = BSWAP4(ctr);
  1051. #else
  1052. PUTU32(ctx->Yi.c + 12, ctr);
  1053. #endif
  1054. else
  1055. ctx->Yi.d[3] = ctr;
  1056. }
  1057. ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
  1058. n = (n + 1) % 16;
  1059. if (n == 0)
  1060. GCM_MUL(ctx);
  1061. }
  1062. ctx->mres = n;
  1063. return 0;
  1064. }
  1065. int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
  1066. const unsigned char *in, unsigned char *out,
  1067. size_t len)
  1068. {
  1069. const union {
  1070. long one;
  1071. char little;
  1072. } is_endian = { 1 };
  1073. unsigned int n, ctr;
  1074. size_t i;
  1075. u64 mlen = ctx->len.u[1];
  1076. block128_f block = ctx->block;
  1077. void *key = ctx->key;
  1078. #ifdef GCM_FUNCREF_4BIT
  1079. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  1080. # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
  1081. void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
  1082. const u8 *inp, size_t len) = ctx->ghash;
  1083. # endif
  1084. #endif
  1085. mlen += len;
  1086. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  1087. return -1;
  1088. ctx->len.u[1] = mlen;
  1089. if (ctx->ares) {
  1090. /* First call to decrypt finalizes GHASH(AAD) */
  1091. GCM_MUL(ctx);
  1092. ctx->ares = 0;
  1093. }
  1094. if (is_endian.little)
  1095. #ifdef BSWAP4
  1096. ctr = BSWAP4(ctx->Yi.d[3]);
  1097. #else
  1098. ctr = GETU32(ctx->Yi.c + 12);
  1099. #endif
  1100. else
  1101. ctr = ctx->Yi.d[3];
  1102. n = ctx->mres;
  1103. #if !defined(OPENSSL_SMALL_FOOTPRINT)
  1104. if (16 % sizeof(size_t) == 0) { /* always true actually */
  1105. do {
  1106. if (n) {
  1107. while (n && len) {
  1108. u8 c = *(in++);
  1109. *(out++) = c ^ ctx->EKi.c[n];
  1110. ctx->Xi.c[n] ^= c;
  1111. --len;
  1112. n = (n + 1) % 16;
  1113. }
  1114. if (n == 0)
  1115. GCM_MUL(ctx);
  1116. else {
  1117. ctx->mres = n;
  1118. return 0;
  1119. }
  1120. }
  1121. # if defined(STRICT_ALIGNMENT)
  1122. if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
  1123. break;
  1124. # endif
  1125. # if defined(GHASH)
  1126. # if defined(GHASH_CHUNK)
  1127. while (len >= GHASH_CHUNK) {
  1128. size_t j = GHASH_CHUNK;
  1129. GHASH(ctx, in, GHASH_CHUNK);
  1130. while (j) {
  1131. size_t *out_t = (size_t *)out;
  1132. const size_t *in_t = (const size_t *)in;
  1133. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1134. ++ctr;
  1135. if (is_endian.little)
  1136. # ifdef BSWAP4
  1137. ctx->Yi.d[3] = BSWAP4(ctr);
  1138. # else
  1139. PUTU32(ctx->Yi.c + 12, ctr);
  1140. # endif
  1141. else
  1142. ctx->Yi.d[3] = ctr;
  1143. for (i = 0; i < 16 / sizeof(size_t); ++i)
  1144. out_t[i] = in_t[i] ^ ctx->EKi.t[i];
  1145. out += 16;
  1146. in += 16;
  1147. j -= 16;
  1148. }
  1149. len -= GHASH_CHUNK;
  1150. }
  1151. # endif
  1152. if ((i = (len & (size_t)-16))) {
  1153. GHASH(ctx, in, i);
  1154. while (len >= 16) {
  1155. size_t *out_t = (size_t *)out;
  1156. const size_t *in_t = (const size_t *)in;
  1157. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1158. ++ctr;
  1159. if (is_endian.little)
  1160. # ifdef BSWAP4
  1161. ctx->Yi.d[3] = BSWAP4(ctr);
  1162. # else
  1163. PUTU32(ctx->Yi.c + 12, ctr);
  1164. # endif
  1165. else
  1166. ctx->Yi.d[3] = ctr;
  1167. for (i = 0; i < 16 / sizeof(size_t); ++i)
  1168. out_t[i] = in_t[i] ^ ctx->EKi.t[i];
  1169. out += 16;
  1170. in += 16;
  1171. len -= 16;
  1172. }
  1173. }
  1174. # else
  1175. while (len >= 16) {
  1176. size_t *out_t = (size_t *)out;
  1177. const size_t *in_t = (const size_t *)in;
  1178. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1179. ++ctr;
  1180. if (is_endian.little)
  1181. # ifdef BSWAP4
  1182. ctx->Yi.d[3] = BSWAP4(ctr);
  1183. # else
  1184. PUTU32(ctx->Yi.c + 12, ctr);
  1185. # endif
  1186. else
  1187. ctx->Yi.d[3] = ctr;
  1188. for (i = 0; i < 16 / sizeof(size_t); ++i) {
  1189. size_t c = in[i];
  1190. out[i] = c ^ ctx->EKi.t[i];
  1191. ctx->Xi.t[i] ^= c;
  1192. }
  1193. GCM_MUL(ctx);
  1194. out += 16;
  1195. in += 16;
  1196. len -= 16;
  1197. }
  1198. # endif
  1199. if (len) {
  1200. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1201. ++ctr;
  1202. if (is_endian.little)
  1203. # ifdef BSWAP4
  1204. ctx->Yi.d[3] = BSWAP4(ctr);
  1205. # else
  1206. PUTU32(ctx->Yi.c + 12, ctr);
  1207. # endif
  1208. else
  1209. ctx->Yi.d[3] = ctr;
  1210. while (len--) {
  1211. u8 c = in[n];
  1212. ctx->Xi.c[n] ^= c;
  1213. out[n] = c ^ ctx->EKi.c[n];
  1214. ++n;
  1215. }
  1216. }
  1217. ctx->mres = n;
  1218. return 0;
  1219. } while (0);
  1220. }
  1221. #endif
  1222. for (i = 0; i < len; ++i) {
  1223. u8 c;
  1224. if (n == 0) {
  1225. (*block) (ctx->Yi.c, ctx->EKi.c, key);
  1226. ++ctr;
  1227. if (is_endian.little)
  1228. #ifdef BSWAP4
  1229. ctx->Yi.d[3] = BSWAP4(ctr);
  1230. #else
  1231. PUTU32(ctx->Yi.c + 12, ctr);
  1232. #endif
  1233. else
  1234. ctx->Yi.d[3] = ctr;
  1235. }
  1236. c = in[i];
  1237. out[i] = c ^ ctx->EKi.c[n];
  1238. ctx->Xi.c[n] ^= c;
  1239. n = (n + 1) % 16;
  1240. if (n == 0)
  1241. GCM_MUL(ctx);
  1242. }
  1243. ctx->mres = n;
  1244. return 0;
  1245. }
  1246. int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
  1247. const unsigned char *in, unsigned char *out,
  1248. size_t len, ctr128_f stream)
  1249. {
  1250. #if defined(OPENSSL_SMALL_FOOTPRINT)
  1251. return CRYPTO_gcm128_encrypt(ctx, in, out, len);
  1252. #else
  1253. const union {
  1254. long one;
  1255. char little;
  1256. } is_endian = { 1 };
  1257. unsigned int n, ctr;
  1258. size_t i;
  1259. u64 mlen = ctx->len.u[1];
  1260. void *key = ctx->key;
  1261. # ifdef GCM_FUNCREF_4BIT
  1262. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  1263. # ifdef GHASH
  1264. void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
  1265. const u8 *inp, size_t len) = ctx->ghash;
  1266. # endif
  1267. # endif
  1268. mlen += len;
  1269. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  1270. return -1;
  1271. ctx->len.u[1] = mlen;
  1272. if (ctx->ares) {
  1273. /* First call to encrypt finalizes GHASH(AAD) */
  1274. GCM_MUL(ctx);
  1275. ctx->ares = 0;
  1276. }
  1277. if (is_endian.little)
  1278. # ifdef BSWAP4
  1279. ctr = BSWAP4(ctx->Yi.d[3]);
  1280. # else
  1281. ctr = GETU32(ctx->Yi.c + 12);
  1282. # endif
  1283. else
  1284. ctr = ctx->Yi.d[3];
  1285. n = ctx->mres;
  1286. if (n) {
  1287. while (n && len) {
  1288. ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
  1289. --len;
  1290. n = (n + 1) % 16;
  1291. }
  1292. if (n == 0)
  1293. GCM_MUL(ctx);
  1294. else {
  1295. ctx->mres = n;
  1296. return 0;
  1297. }
  1298. }
  1299. # if defined(GHASH) && defined(GHASH_CHUNK)
  1300. while (len >= GHASH_CHUNK) {
  1301. (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
  1302. ctr += GHASH_CHUNK / 16;
  1303. if (is_endian.little)
  1304. # ifdef BSWAP4
  1305. ctx->Yi.d[3] = BSWAP4(ctr);
  1306. # else
  1307. PUTU32(ctx->Yi.c + 12, ctr);
  1308. # endif
  1309. else
  1310. ctx->Yi.d[3] = ctr;
  1311. GHASH(ctx, out, GHASH_CHUNK);
  1312. out += GHASH_CHUNK;
  1313. in += GHASH_CHUNK;
  1314. len -= GHASH_CHUNK;
  1315. }
  1316. # endif
  1317. if ((i = (len & (size_t)-16))) {
  1318. size_t j = i / 16;
  1319. (*stream) (in, out, j, key, ctx->Yi.c);
  1320. ctr += (unsigned int)j;
  1321. if (is_endian.little)
  1322. # ifdef BSWAP4
  1323. ctx->Yi.d[3] = BSWAP4(ctr);
  1324. # else
  1325. PUTU32(ctx->Yi.c + 12, ctr);
  1326. # endif
  1327. else
  1328. ctx->Yi.d[3] = ctr;
  1329. in += i;
  1330. len -= i;
  1331. # if defined(GHASH)
  1332. GHASH(ctx, out, i);
  1333. out += i;
  1334. # else
  1335. while (j--) {
  1336. for (i = 0; i < 16; ++i)
  1337. ctx->Xi.c[i] ^= out[i];
  1338. GCM_MUL(ctx);
  1339. out += 16;
  1340. }
  1341. # endif
  1342. }
  1343. if (len) {
  1344. (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
  1345. ++ctr;
  1346. if (is_endian.little)
  1347. # ifdef BSWAP4
  1348. ctx->Yi.d[3] = BSWAP4(ctr);
  1349. # else
  1350. PUTU32(ctx->Yi.c + 12, ctr);
  1351. # endif
  1352. else
  1353. ctx->Yi.d[3] = ctr;
  1354. while (len--) {
  1355. ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
  1356. ++n;
  1357. }
  1358. }
  1359. ctx->mres = n;
  1360. return 0;
  1361. #endif
  1362. }
  1363. int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
  1364. const unsigned char *in, unsigned char *out,
  1365. size_t len, ctr128_f stream)
  1366. {
  1367. #if defined(OPENSSL_SMALL_FOOTPRINT)
  1368. return CRYPTO_gcm128_decrypt(ctx, in, out, len);
  1369. #else
  1370. const union {
  1371. long one;
  1372. char little;
  1373. } is_endian = { 1 };
  1374. unsigned int n, ctr;
  1375. size_t i;
  1376. u64 mlen = ctx->len.u[1];
  1377. void *key = ctx->key;
  1378. # ifdef GCM_FUNCREF_4BIT
  1379. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  1380. # ifdef GHASH
  1381. void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
  1382. const u8 *inp, size_t len) = ctx->ghash;
  1383. # endif
  1384. # endif
  1385. mlen += len;
  1386. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  1387. return -1;
  1388. ctx->len.u[1] = mlen;
  1389. if (ctx->ares) {
  1390. /* First call to decrypt finalizes GHASH(AAD) */
  1391. GCM_MUL(ctx);
  1392. ctx->ares = 0;
  1393. }
  1394. if (is_endian.little)
  1395. # ifdef BSWAP4
  1396. ctr = BSWAP4(ctx->Yi.d[3]);
  1397. # else
  1398. ctr = GETU32(ctx->Yi.c + 12);
  1399. # endif
  1400. else
  1401. ctr = ctx->Yi.d[3];
  1402. n = ctx->mres;
  1403. if (n) {
  1404. while (n && len) {
  1405. u8 c = *(in++);
  1406. *(out++) = c ^ ctx->EKi.c[n];
  1407. ctx->Xi.c[n] ^= c;
  1408. --len;
  1409. n = (n + 1) % 16;
  1410. }
  1411. if (n == 0)
  1412. GCM_MUL(ctx);
  1413. else {
  1414. ctx->mres = n;
  1415. return 0;
  1416. }
  1417. }
  1418. # if defined(GHASH) && defined(GHASH_CHUNK)
  1419. while (len >= GHASH_CHUNK) {
  1420. GHASH(ctx, in, GHASH_CHUNK);
  1421. (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
  1422. ctr += GHASH_CHUNK / 16;
  1423. if (is_endian.little)
  1424. # ifdef BSWAP4
  1425. ctx->Yi.d[3] = BSWAP4(ctr);
  1426. # else
  1427. PUTU32(ctx->Yi.c + 12, ctr);
  1428. # endif
  1429. else
  1430. ctx->Yi.d[3] = ctr;
  1431. out += GHASH_CHUNK;
  1432. in += GHASH_CHUNK;
  1433. len -= GHASH_CHUNK;
  1434. }
  1435. # endif
  1436. if ((i = (len & (size_t)-16))) {
  1437. size_t j = i / 16;
  1438. # if defined(GHASH)
  1439. GHASH(ctx, in, i);
  1440. # else
  1441. while (j--) {
  1442. size_t k;
  1443. for (k = 0; k < 16; ++k)
  1444. ctx->Xi.c[k] ^= in[k];
  1445. GCM_MUL(ctx);
  1446. in += 16;
  1447. }
  1448. j = i / 16;
  1449. in -= i;
  1450. # endif
  1451. (*stream) (in, out, j, key, ctx->Yi.c);
  1452. ctr += (unsigned int)j;
  1453. if (is_endian.little)
  1454. # ifdef BSWAP4
  1455. ctx->Yi.d[3] = BSWAP4(ctr);
  1456. # else
  1457. PUTU32(ctx->Yi.c + 12, ctr);
  1458. # endif
  1459. else
  1460. ctx->Yi.d[3] = ctr;
  1461. out += i;
  1462. in += i;
  1463. len -= i;
  1464. }
  1465. if (len) {
  1466. (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
  1467. ++ctr;
  1468. if (is_endian.little)
  1469. # ifdef BSWAP4
  1470. ctx->Yi.d[3] = BSWAP4(ctr);
  1471. # else
  1472. PUTU32(ctx->Yi.c + 12, ctr);
  1473. # endif
  1474. else
  1475. ctx->Yi.d[3] = ctr;
  1476. while (len--) {
  1477. u8 c = in[n];
  1478. ctx->Xi.c[n] ^= c;
  1479. out[n] = c ^ ctx->EKi.c[n];
  1480. ++n;
  1481. }
  1482. }
  1483. ctx->mres = n;
  1484. return 0;
  1485. #endif
  1486. }
  1487. int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag,
  1488. size_t len)
  1489. {
  1490. const union {
  1491. long one;
  1492. char little;
  1493. } is_endian = { 1 };
  1494. u64 alen = ctx->len.u[0] << 3;
  1495. u64 clen = ctx->len.u[1] << 3;
  1496. #ifdef GCM_FUNCREF_4BIT
  1497. void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
  1498. #endif
  1499. if (ctx->mres || ctx->ares)
  1500. GCM_MUL(ctx);
  1501. if (is_endian.little) {
  1502. #ifdef BSWAP8
  1503. alen = BSWAP8(alen);
  1504. clen = BSWAP8(clen);
  1505. #else
  1506. u8 *p = ctx->len.c;
  1507. ctx->len.u[0] = alen;
  1508. ctx->len.u[1] = clen;
  1509. alen = (u64)GETU32(p) << 32 | GETU32(p + 4);
  1510. clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
  1511. #endif
  1512. }
  1513. ctx->Xi.u[0] ^= alen;
  1514. ctx->Xi.u[1] ^= clen;
  1515. GCM_MUL(ctx);
  1516. ctx->Xi.u[0] ^= ctx->EK0.u[0];
  1517. ctx->Xi.u[1] ^= ctx->EK0.u[1];
  1518. if (tag && len <= sizeof(ctx->Xi))
  1519. return CRYPTO_memcmp(ctx->Xi.c, tag, len);
  1520. else
  1521. return -1;
  1522. }
  1523. void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
  1524. {
  1525. CRYPTO_gcm128_finish(ctx, NULL, 0);
  1526. memcpy(tag, ctx->Xi.c,
  1527. len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
  1528. }
  1529. GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
  1530. {
  1531. GCM128_CONTEXT *ret;
  1532. if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL)
  1533. CRYPTO_gcm128_init(ret, key, block);
  1534. return ret;
  1535. }
  1536. void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
  1537. {
  1538. OPENSSL_clear_free(ctx, sizeof(*ctx));
  1539. }