123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- /*
- * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <string.h>
- #include <openssl/crypto.h>
- #include "crypto/modes.h"
- /*
- * NOTE: the IV/counter CTR mode is big-endian. The code itself is
- * endian-neutral.
- */
- /* increment counter (128-bit int) by 1 */
- static void ctr128_inc(unsigned char *counter)
- {
- u32 n = 16, c = 1;
- do {
- --n;
- c += counter[n];
- counter[n] = (u8)c;
- c >>= 8;
- } while (n);
- }
- #if !defined(OPENSSL_SMALL_FOOTPRINT)
- static void ctr128_inc_aligned(unsigned char *counter)
- {
- size_t *data, c, d, n;
- const union {
- long one;
- char little;
- } is_endian = {
- 1
- };
- if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) {
- ctr128_inc(counter);
- return;
- }
- data = (size_t *)counter;
- c = 1;
- n = 16 / sizeof(size_t);
- do {
- --n;
- d = data[n] += c;
- /* did addition carry? */
- c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1);
- } while (n);
- }
- #endif
- /*
- * The input encrypted as though 128bit counter mode is being used. The
- * extra state information to record how much of the 128bit block we have
- * used is contained in *num, and the encrypted counter is kept in
- * ecount_buf. Both *num and ecount_buf must be initialised with zeros
- * before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes
- * that the counter is in the x lower bits of the IV (ivec), and that the
- * application has full control over overflow and the rest of the IV. This
- * implementation takes NO responsibility for checking that the counter
- * doesn't overflow into the rest of the IV when incremented.
- */
- void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,
- size_t len, const void *key,
- unsigned char ivec[16],
- unsigned char ecount_buf[16], unsigned int *num,
- block128_f block)
- {
- unsigned int n;
- size_t l = 0;
- n = *num;
- #if !defined(OPENSSL_SMALL_FOOTPRINT)
- if (16 % sizeof(size_t) == 0) { /* always true actually */
- do {
- while (n && len) {
- *(out++) = *(in++) ^ ecount_buf[n];
- --len;
- n = (n + 1) % 16;
- }
- # if defined(STRICT_ALIGNMENT)
- if (((size_t)in | (size_t)out | (size_t)ecount_buf)
- % sizeof(size_t) != 0)
- break;
- # endif
- while (len >= 16) {
- (*block) (ivec, ecount_buf, key);
- ctr128_inc_aligned(ivec);
- for (n = 0; n < 16; n += sizeof(size_t))
- *(size_t *)(out + n) =
- *(size_t *)(in + n) ^ *(size_t *)(ecount_buf + n);
- len -= 16;
- out += 16;
- in += 16;
- n = 0;
- }
- if (len) {
- (*block) (ivec, ecount_buf, key);
- ctr128_inc_aligned(ivec);
- while (len--) {
- out[n] = in[n] ^ ecount_buf[n];
- ++n;
- }
- }
- *num = n;
- return;
- } while (0);
- }
- /* the rest would be commonly eliminated by x86* compiler */
- #endif
- while (l < len) {
- if (n == 0) {
- (*block) (ivec, ecount_buf, key);
- ctr128_inc(ivec);
- }
- out[l] = in[l] ^ ecount_buf[n];
- ++l;
- n = (n + 1) % 16;
- }
- *num = n;
- }
- /* increment upper 96 bits of 128-bit counter by 1 */
- static void ctr96_inc(unsigned char *counter)
- {
- u32 n = 12, c = 1;
- do {
- --n;
- c += counter[n];
- counter[n] = (u8)c;
- c >>= 8;
- } while (n);
- }
- void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out,
- size_t len, const void *key,
- unsigned char ivec[16],
- unsigned char ecount_buf[16],
- unsigned int *num, ctr128_f func)
- {
- unsigned int n, ctr32;
- n = *num;
- while (n && len) {
- *(out++) = *(in++) ^ ecount_buf[n];
- --len;
- n = (n + 1) % 16;
- }
- ctr32 = GETU32(ivec + 12);
- while (len >= 16) {
- size_t blocks = len / 16;
- /*
- * 1<<28 is just a not-so-small yet not-so-large number...
- * Below condition is practically never met, but it has to
- * be checked for code correctness.
- */
- if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28))
- blocks = (1U << 28);
- /*
- * As (*func) operates on 32-bit counter, caller
- * has to handle overflow. 'if' below detects the
- * overflow, which is then handled by limiting the
- * amount of blocks to the exact overflow point...
- */
- ctr32 += (u32)blocks;
- if (ctr32 < blocks) {
- blocks -= ctr32;
- ctr32 = 0;
- }
- (*func) (in, out, blocks, key, ivec);
- /* (*ctr) does not update ivec, caller does: */
- PUTU32(ivec + 12, ctr32);
- /* ... overflow was detected, propagate carry. */
- if (ctr32 == 0)
- ctr96_inc(ivec);
- blocks *= 16;
- len -= blocks;
- out += blocks;
- in += blocks;
- }
- if (len) {
- memset(ecount_buf, 0, 16);
- (*func) (ecount_buf, ecount_buf, 1, key, ivec);
- ++ctr32;
- PUTU32(ivec + 12, ctr32);
- if (ctr32 == 0)
- ctr96_inc(ivec);
- while (len--) {
- out[n] = in[n] ^ ecount_buf[n];
- ++n;
- }
- }
- *num = n;
- }
|