123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191 |
- /*
- * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <assert.h>
- #include <limits.h>
- #include <stdio.h>
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- #ifndef OPENSSL_NO_EC2M
- /*
- * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
- * fail.
- */
- # define MAX_ITERATIONS 50
- # define SQR_nibble(w) ((((w) & 8) << 3) \
- | (((w) & 4) << 2) \
- | (((w) & 2) << 1) \
- | ((w) & 1))
- /* Platform-specific macros to accelerate squaring. */
- # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
- # define SQR1(w) \
- SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
- SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
- SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
- SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
- # define SQR0(w) \
- SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
- SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
- SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
- SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
- # endif
- # ifdef THIRTY_TWO_BIT
- # define SQR1(w) \
- SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
- SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
- # define SQR0(w) \
- SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
- SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
- # endif
- # if !defined(OPENSSL_BN_ASM_GF2m)
- /*
- * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
- * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
- * the variables have the right amount of space allocated.
- */
- # ifdef THIRTY_TWO_BIT
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
- const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[8], top2b = a >> 30;
- register BN_ULONG a1, a2, a4;
- a1 = a & (0x3FFFFFFF);
- a2 = a1 << 1;
- a4 = a2 << 1;
- tab[0] = 0;
- tab[1] = a1;
- tab[2] = a2;
- tab[3] = a1 ^ a2;
- tab[4] = a4;
- tab[5] = a1 ^ a4;
- tab[6] = a2 ^ a4;
- tab[7] = a1 ^ a2 ^ a4;
- s = tab[b & 0x7];
- l = s;
- s = tab[b >> 3 & 0x7];
- l ^= s << 3;
- h = s >> 29;
- s = tab[b >> 6 & 0x7];
- l ^= s << 6;
- h ^= s >> 26;
- s = tab[b >> 9 & 0x7];
- l ^= s << 9;
- h ^= s >> 23;
- s = tab[b >> 12 & 0x7];
- l ^= s << 12;
- h ^= s >> 20;
- s = tab[b >> 15 & 0x7];
- l ^= s << 15;
- h ^= s >> 17;
- s = tab[b >> 18 & 0x7];
- l ^= s << 18;
- h ^= s >> 14;
- s = tab[b >> 21 & 0x7];
- l ^= s << 21;
- h ^= s >> 11;
- s = tab[b >> 24 & 0x7];
- l ^= s << 24;
- h ^= s >> 8;
- s = tab[b >> 27 & 0x7];
- l ^= s << 27;
- h ^= s >> 5;
- s = tab[b >> 30];
- l ^= s << 30;
- h ^= s >> 2;
- /* compensate for the top two bits of a */
- if (top2b & 01) {
- l ^= b << 30;
- h ^= b >> 2;
- }
- if (top2b & 02) {
- l ^= b << 31;
- h ^= b >> 1;
- }
- *r1 = h;
- *r0 = l;
- }
- # endif
- # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
- const BN_ULONG b)
- {
- register BN_ULONG h, l, s;
- BN_ULONG tab[16], top3b = a >> 61;
- register BN_ULONG a1, a2, a4, a8;
- a1 = a & (0x1FFFFFFFFFFFFFFFULL);
- a2 = a1 << 1;
- a4 = a2 << 1;
- a8 = a4 << 1;
- tab[0] = 0;
- tab[1] = a1;
- tab[2] = a2;
- tab[3] = a1 ^ a2;
- tab[4] = a4;
- tab[5] = a1 ^ a4;
- tab[6] = a2 ^ a4;
- tab[7] = a1 ^ a2 ^ a4;
- tab[8] = a8;
- tab[9] = a1 ^ a8;
- tab[10] = a2 ^ a8;
- tab[11] = a1 ^ a2 ^ a8;
- tab[12] = a4 ^ a8;
- tab[13] = a1 ^ a4 ^ a8;
- tab[14] = a2 ^ a4 ^ a8;
- tab[15] = a1 ^ a2 ^ a4 ^ a8;
- s = tab[b & 0xF];
- l = s;
- s = tab[b >> 4 & 0xF];
- l ^= s << 4;
- h = s >> 60;
- s = tab[b >> 8 & 0xF];
- l ^= s << 8;
- h ^= s >> 56;
- s = tab[b >> 12 & 0xF];
- l ^= s << 12;
- h ^= s >> 52;
- s = tab[b >> 16 & 0xF];
- l ^= s << 16;
- h ^= s >> 48;
- s = tab[b >> 20 & 0xF];
- l ^= s << 20;
- h ^= s >> 44;
- s = tab[b >> 24 & 0xF];
- l ^= s << 24;
- h ^= s >> 40;
- s = tab[b >> 28 & 0xF];
- l ^= s << 28;
- h ^= s >> 36;
- s = tab[b >> 32 & 0xF];
- l ^= s << 32;
- h ^= s >> 32;
- s = tab[b >> 36 & 0xF];
- l ^= s << 36;
- h ^= s >> 28;
- s = tab[b >> 40 & 0xF];
- l ^= s << 40;
- h ^= s >> 24;
- s = tab[b >> 44 & 0xF];
- l ^= s << 44;
- h ^= s >> 20;
- s = tab[b >> 48 & 0xF];
- l ^= s << 48;
- h ^= s >> 16;
- s = tab[b >> 52 & 0xF];
- l ^= s << 52;
- h ^= s >> 12;
- s = tab[b >> 56 & 0xF];
- l ^= s << 56;
- h ^= s >> 8;
- s = tab[b >> 60];
- l ^= s << 60;
- h ^= s >> 4;
- /* compensate for the top three bits of a */
- if (top3b & 01) {
- l ^= b << 61;
- h ^= b >> 3;
- }
- if (top3b & 02) {
- l ^= b << 62;
- h ^= b >> 2;
- }
- if (top3b & 04) {
- l ^= b << 63;
- h ^= b >> 1;
- }
- *r1 = h;
- *r0 = l;
- }
- # endif
- /*
- * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
- * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
- * ensure that the variables have the right amount of space allocated.
- */
- static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
- const BN_ULONG b1, const BN_ULONG b0)
- {
- BN_ULONG m1, m0;
- /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
- bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
- bn_GF2m_mul_1x1(r + 1, r, a0, b0);
- bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
- /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
- r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
- r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
- }
- # else
- void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
- BN_ULONG b0);
- # endif
- /*
- * Add polynomials a and b and store result in r; r could be a or b, a and b
- * could be equal; r is the bitwise XOR of a and b.
- */
- int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
- {
- int i;
- const BIGNUM *at, *bt;
- bn_check_top(a);
- bn_check_top(b);
- if (a->top < b->top) {
- at = b;
- bt = a;
- } else {
- at = a;
- bt = b;
- }
- if (bn_wexpand(r, at->top) == NULL)
- return 0;
- for (i = 0; i < bt->top; i++) {
- r->d[i] = at->d[i] ^ bt->d[i];
- }
- for (; i < at->top; i++) {
- r->d[i] = at->d[i];
- }
- r->top = at->top;
- bn_correct_top(r);
- return 1;
- }
- /*-
- * Some functions allow for representation of the irreducible polynomials
- * as an int[], say p. The irreducible f(t) is then of the form:
- * t^p[0] + t^p[1] + ... + t^p[k]
- * where m = p[0] > p[1] > ... > p[k] = 0.
- */
- /* Performs modular reduction of a and store result in r. r could be a. */
- int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
- {
- int j, k;
- int n, dN, d0, d1;
- BN_ULONG zz, *z;
- bn_check_top(a);
- if (p[0] == 0) {
- /* reduction mod 1 => return 0 */
- BN_zero(r);
- return 1;
- }
- /*
- * Since the algorithm does reduction in the r value, if a != r, copy the
- * contents of a into r so we can do reduction in r.
- */
- if (a != r) {
- if (!bn_wexpand(r, a->top))
- return 0;
- for (j = 0; j < a->top; j++) {
- r->d[j] = a->d[j];
- }
- r->top = a->top;
- }
- z = r->d;
- /* start reduction */
- dN = p[0] / BN_BITS2;
- for (j = r->top - 1; j > dN;) {
- zz = z[j];
- if (z[j] == 0) {
- j--;
- continue;
- }
- z[j] = 0;
- for (k = 1; p[k] != 0; k++) {
- /* reducing component t^p[k] */
- n = p[0] - p[k];
- d0 = n % BN_BITS2;
- d1 = BN_BITS2 - d0;
- n /= BN_BITS2;
- z[j - n] ^= (zz >> d0);
- if (d0)
- z[j - n - 1] ^= (zz << d1);
- }
- /* reducing component t^0 */
- n = dN;
- d0 = p[0] % BN_BITS2;
- d1 = BN_BITS2 - d0;
- z[j - n] ^= (zz >> d0);
- if (d0)
- z[j - n - 1] ^= (zz << d1);
- }
- /* final round of reduction */
- while (j == dN) {
- d0 = p[0] % BN_BITS2;
- zz = z[dN] >> d0;
- if (zz == 0)
- break;
- d1 = BN_BITS2 - d0;
- /* clear up the top d1 bits */
- if (d0)
- z[dN] = (z[dN] << d1) >> d1;
- else
- z[dN] = 0;
- z[0] ^= zz; /* reduction t^0 component */
- for (k = 1; p[k] != 0; k++) {
- BN_ULONG tmp_ulong;
- /* reducing component t^p[k] */
- n = p[k] / BN_BITS2;
- d0 = p[k] % BN_BITS2;
- d1 = BN_BITS2 - d0;
- z[n] ^= (zz << d0);
- if (d0 && (tmp_ulong = zz >> d1))
- z[n + 1] ^= tmp_ulong;
- }
- }
- bn_correct_top(r);
- return 1;
- }
- /*
- * Performs modular reduction of a by p and store result in r. r could be a.
- * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
- * function is only provided for convenience; for best performance, use the
- * BN_GF2m_mod_arr function.
- */
- int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
- {
- int ret = 0;
- int arr[6];
- bn_check_top(a);
- bn_check_top(p);
- ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
- if (!ret || ret > (int)OSSL_NELEM(arr)) {
- ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
- return 0;
- }
- ret = BN_GF2m_mod_arr(r, a, arr);
- bn_check_top(r);
- return ret;
- }
- /*
- * Compute the product of two polynomials a and b, reduce modulo p, and store
- * the result in r. r could be a or b; a could be b.
- */
- int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const int p[], BN_CTX *ctx)
- {
- int zlen, i, j, k, ret = 0;
- BIGNUM *s;
- BN_ULONG x1, x0, y1, y0, zz[4];
- bn_check_top(a);
- bn_check_top(b);
- if (a == b) {
- return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
- }
- BN_CTX_start(ctx);
- if ((s = BN_CTX_get(ctx)) == NULL)
- goto err;
- zlen = a->top + b->top + 4;
- if (!bn_wexpand(s, zlen))
- goto err;
- s->top = zlen;
- for (i = 0; i < zlen; i++)
- s->d[i] = 0;
- for (j = 0; j < b->top; j += 2) {
- y0 = b->d[j];
- y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
- for (i = 0; i < a->top; i += 2) {
- x0 = a->d[i];
- x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
- bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
- for (k = 0; k < 4; k++)
- s->d[i + j + k] ^= zz[k];
- }
- }
- bn_correct_top(s);
- if (BN_GF2m_mod_arr(r, s, p))
- ret = 1;
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the product of two polynomials a and b, reduce modulo p, and store
- * the result in r. r could be a or b; a could equal b. This function calls
- * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
- * only provided for convenience; for best performance, use the
- * BN_GF2m_mod_mul_arr function.
- */
- int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p) + 1;
- int *arr;
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(p);
- arr = OPENSSL_malloc(sizeof(*arr) * max);
- if (arr == NULL) {
- ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
- bn_check_top(r);
- err:
- OPENSSL_free(arr);
- return ret;
- }
- /* Square a, reduce the result mod p, and store it in a. r could be a. */
- int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
- BN_CTX *ctx)
- {
- int i, ret = 0;
- BIGNUM *s;
- bn_check_top(a);
- BN_CTX_start(ctx);
- if ((s = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!bn_wexpand(s, 2 * a->top))
- goto err;
- for (i = a->top - 1; i >= 0; i--) {
- s->d[2 * i + 1] = SQR1(a->d[i]);
- s->d[2 * i] = SQR0(a->d[i]);
- }
- s->top = 2 * a->top;
- bn_correct_top(s);
- if (!BN_GF2m_mod_arr(r, s, p))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Square a, reduce the result mod p, and store it in a. r could be a. This
- * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
- * wrapper function is only provided for convenience; for best performance,
- * use the BN_GF2m_mod_sqr_arr function.
- */
- int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p) + 1;
- int *arr;
- bn_check_top(a);
- bn_check_top(p);
- arr = OPENSSL_malloc(sizeof(*arr) * max);
- if (arr == NULL) {
- ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
- bn_check_top(r);
- err:
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
- * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
- * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
- * Curve Cryptography Over Binary Fields".
- */
- static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
- const BIGNUM *p, BN_CTX *ctx)
- {
- BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
- int ret = 0;
- bn_check_top(a);
- bn_check_top(p);
- BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- c = BN_CTX_get(ctx);
- u = BN_CTX_get(ctx);
- v = BN_CTX_get(ctx);
- if (v == NULL)
- goto err;
- if (!BN_GF2m_mod(u, a, p))
- goto err;
- if (BN_is_zero(u))
- goto err;
- if (!BN_copy(v, p))
- goto err;
- # if 0
- if (!BN_one(b))
- goto err;
- while (1) {
- while (!BN_is_odd(u)) {
- if (BN_is_zero(u))
- goto err;
- if (!BN_rshift1(u, u))
- goto err;
- if (BN_is_odd(b)) {
- if (!BN_GF2m_add(b, b, p))
- goto err;
- }
- if (!BN_rshift1(b, b))
- goto err;
- }
- if (BN_abs_is_word(u, 1))
- break;
- if (BN_num_bits(u) < BN_num_bits(v)) {
- tmp = u;
- u = v;
- v = tmp;
- tmp = b;
- b = c;
- c = tmp;
- }
- if (!BN_GF2m_add(u, u, v))
- goto err;
- if (!BN_GF2m_add(b, b, c))
- goto err;
- }
- # else
- {
- int i;
- int ubits = BN_num_bits(u);
- int vbits = BN_num_bits(v); /* v is copy of p */
- int top = p->top;
- BN_ULONG *udp, *bdp, *vdp, *cdp;
- if (!bn_wexpand(u, top))
- goto err;
- udp = u->d;
- for (i = u->top; i < top; i++)
- udp[i] = 0;
- u->top = top;
- if (!bn_wexpand(b, top))
- goto err;
- bdp = b->d;
- bdp[0] = 1;
- for (i = 1; i < top; i++)
- bdp[i] = 0;
- b->top = top;
- if (!bn_wexpand(c, top))
- goto err;
- cdp = c->d;
- for (i = 0; i < top; i++)
- cdp[i] = 0;
- c->top = top;
- vdp = v->d; /* It pays off to "cache" *->d pointers,
- * because it allows optimizer to be more
- * aggressive. But we don't have to "cache"
- * p->d, because *p is declared 'const'... */
- while (1) {
- while (ubits && !(udp[0] & 1)) {
- BN_ULONG u0, u1, b0, b1, mask;
- u0 = udp[0];
- b0 = bdp[0];
- mask = (BN_ULONG)0 - (b0 & 1);
- b0 ^= p->d[0] & mask;
- for (i = 0; i < top - 1; i++) {
- u1 = udp[i + 1];
- udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
- u0 = u1;
- b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
- bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
- b0 = b1;
- }
- udp[i] = u0 >> 1;
- bdp[i] = b0 >> 1;
- ubits--;
- }
- if (ubits <= BN_BITS2) {
- if (udp[0] == 0) /* poly was reducible */
- goto err;
- if (udp[0] == 1)
- break;
- }
- if (ubits < vbits) {
- i = ubits;
- ubits = vbits;
- vbits = i;
- tmp = u;
- u = v;
- v = tmp;
- tmp = b;
- b = c;
- c = tmp;
- udp = vdp;
- vdp = v->d;
- bdp = cdp;
- cdp = c->d;
- }
- for (i = 0; i < top; i++) {
- udp[i] ^= vdp[i];
- bdp[i] ^= cdp[i];
- }
- if (ubits == vbits) {
- BN_ULONG ul;
- int utop = (ubits - 1) / BN_BITS2;
- while ((ul = udp[utop]) == 0 && utop)
- utop--;
- ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
- }
- }
- bn_correct_top(b);
- }
- # endif
- if (!BN_copy(r, b))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- # ifdef BN_DEBUG
- /* BN_CTX_end would complain about the expanded form */
- bn_correct_top(c);
- bn_correct_top(u);
- bn_correct_top(v);
- # endif
- BN_CTX_end(ctx);
- return ret;
- }
- /*-
- * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
- * This is not constant time.
- * But it does eliminate first order deduction on the input.
- */
- int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- {
- BIGNUM *b = NULL;
- int ret = 0;
- BN_CTX_start(ctx);
- if ((b = BN_CTX_get(ctx)) == NULL)
- goto err;
- /* generate blinding value */
- do {
- if (!BN_priv_rand_ex(b, BN_num_bits(p) - 1,
- BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
- goto err;
- } while (BN_is_zero(b));
- /* r := a * b */
- if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
- goto err;
- /* r := 1/(a * b) */
- if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
- goto err;
- /* r := b/(a * b) = 1/a */
- if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Invert xx, reduce modulo p, and store the result in r. r could be xx.
- * This function calls down to the BN_GF2m_mod_inv implementation; this
- * wrapper function is only provided for convenience; for best performance,
- * use the BN_GF2m_mod_inv function.
- */
- int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
- BN_CTX *ctx)
- {
- BIGNUM *field;
- int ret = 0;
- bn_check_top(xx);
- BN_CTX_start(ctx);
- if ((field = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_GF2m_arr2poly(p, field))
- goto err;
- ret = BN_GF2m_mod_inv(r, xx, field, ctx);
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Divide y by x, reduce modulo p, and store the result in r. r could be x
- * or y, x could equal y.
- */
- int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
- const BIGNUM *p, BN_CTX *ctx)
- {
- BIGNUM *xinv = NULL;
- int ret = 0;
- bn_check_top(y);
- bn_check_top(x);
- bn_check_top(p);
- BN_CTX_start(ctx);
- xinv = BN_CTX_get(ctx);
- if (xinv == NULL)
- goto err;
- if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
- goto err;
- if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
- * * or yy, xx could equal yy. This function calls down to the
- * BN_GF2m_mod_div implementation; this wrapper function is only provided for
- * convenience; for best performance, use the BN_GF2m_mod_div function.
- */
- int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
- const int p[], BN_CTX *ctx)
- {
- BIGNUM *field;
- int ret = 0;
- bn_check_top(yy);
- bn_check_top(xx);
- BN_CTX_start(ctx);
- if ((field = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_GF2m_arr2poly(p, field))
- goto err;
- ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the bth power of a, reduce modulo p, and store the result in r. r
- * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
- * P1363.
- */
- int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const int p[], BN_CTX *ctx)
- {
- int ret = 0, i, n;
- BIGNUM *u;
- bn_check_top(a);
- bn_check_top(b);
- if (BN_is_zero(b))
- return BN_one(r);
- if (BN_abs_is_word(b, 1))
- return (BN_copy(r, a) != NULL);
- BN_CTX_start(ctx);
- if ((u = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(u, a, p))
- goto err;
- n = BN_num_bits(b) - 1;
- for (i = n - 1; i >= 0; i--) {
- if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
- goto err;
- if (BN_is_bit_set(b, i)) {
- if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
- goto err;
- }
- }
- if (!BN_copy(r, u))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the bth power of a, reduce modulo p, and store the result in r. r
- * could be a. This function calls down to the BN_GF2m_mod_exp_arr
- * implementation; this wrapper function is only provided for convenience;
- * for best performance, use the BN_GF2m_mod_exp_arr function.
- */
- int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p) + 1;
- int *arr;
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(p);
- arr = OPENSSL_malloc(sizeof(*arr) * max);
- if (arr == NULL) {
- ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
- bn_check_top(r);
- err:
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Compute the square root of a, reduce modulo p, and store the result in r.
- * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
- */
- int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
- BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *u;
- bn_check_top(a);
- if (p[0] == 0) {
- /* reduction mod 1 => return 0 */
- BN_zero(r);
- return 1;
- }
- BN_CTX_start(ctx);
- if ((u = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_set_bit(u, p[0] - 1))
- goto err;
- ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
- bn_check_top(r);
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Compute the square root of a, reduce modulo p, and store the result in r.
- * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
- * implementation; this wrapper function is only provided for convenience;
- * for best performance, use the BN_GF2m_mod_sqrt_arr function.
- */
- int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p) + 1;
- int *arr;
- bn_check_top(a);
- bn_check_top(p);
- arr = OPENSSL_malloc(sizeof(*arr) * max);
- if (arr == NULL) {
- ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
- bn_check_top(r);
- err:
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
- * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
- */
- int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
- BN_CTX *ctx)
- {
- int ret = 0, count = 0, j;
- BIGNUM *a, *z, *rho, *w, *w2, *tmp;
- bn_check_top(a_);
- if (p[0] == 0) {
- /* reduction mod 1 => return 0 */
- BN_zero(r);
- return 1;
- }
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- z = BN_CTX_get(ctx);
- w = BN_CTX_get(ctx);
- if (w == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(a, a_, p))
- goto err;
- if (BN_is_zero(a)) {
- BN_zero(r);
- ret = 1;
- goto err;
- }
- if (p[0] & 0x1) { /* m is odd */
- /* compute half-trace of a */
- if (!BN_copy(z, a))
- goto err;
- for (j = 1; j <= (p[0] - 1) / 2; j++) {
- if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
- goto err;
- if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
- goto err;
- if (!BN_GF2m_add(z, z, a))
- goto err;
- }
- } else { /* m is even */
- rho = BN_CTX_get(ctx);
- w2 = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- if (tmp == NULL)
- goto err;
- do {
- if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
- 0, ctx))
- goto err;
- if (!BN_GF2m_mod_arr(rho, rho, p))
- goto err;
- BN_zero(z);
- if (!BN_copy(w, rho))
- goto err;
- for (j = 1; j <= p[0] - 1; j++) {
- if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
- goto err;
- if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
- goto err;
- if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
- goto err;
- if (!BN_GF2m_add(z, z, tmp))
- goto err;
- if (!BN_GF2m_add(w, w2, rho))
- goto err;
- }
- count++;
- } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
- if (BN_is_zero(w)) {
- ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
- goto err;
- }
- }
- if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
- goto err;
- if (!BN_GF2m_add(w, z, w))
- goto err;
- if (BN_GF2m_cmp(w, a)) {
- ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
- goto err;
- }
- if (!BN_copy(r, z))
- goto err;
- bn_check_top(r);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
- * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
- * implementation; this wrapper function is only provided for convenience;
- * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
- */
- int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
- BN_CTX *ctx)
- {
- int ret = 0;
- const int max = BN_num_bits(p) + 1;
- int *arr;
- bn_check_top(a);
- bn_check_top(p);
- arr = OPENSSL_malloc(sizeof(*arr) * max);
- if (arr == NULL) {
- ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- ret = BN_GF2m_poly2arr(p, arr, max);
- if (!ret || ret > max) {
- ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
- goto err;
- }
- ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
- bn_check_top(r);
- err:
- OPENSSL_free(arr);
- return ret;
- }
- /*
- * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
- * x^i) into an array of integers corresponding to the bits with non-zero
- * coefficient. Array is terminated with -1. Up to max elements of the array
- * will be filled. Return value is total number of array elements that would
- * be filled if array was large enough.
- */
- int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
- {
- int i, j, k = 0;
- BN_ULONG mask;
- if (BN_is_zero(a))
- return 0;
- for (i = a->top - 1; i >= 0; i--) {
- if (!a->d[i])
- /* skip word if a->d[i] == 0 */
- continue;
- mask = BN_TBIT;
- for (j = BN_BITS2 - 1; j >= 0; j--) {
- if (a->d[i] & mask) {
- if (k < max)
- p[k] = BN_BITS2 * i + j;
- k++;
- }
- mask >>= 1;
- }
- }
- if (k < max) {
- p[k] = -1;
- k++;
- }
- return k;
- }
- /*
- * Convert the coefficient array representation of a polynomial to a
- * bit-string. The array must be terminated by -1.
- */
- int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
- {
- int i;
- bn_check_top(a);
- BN_zero(a);
- for (i = 0; p[i] != -1; i++) {
- if (BN_set_bit(a, p[i]) == 0)
- return 0;
- }
- bn_check_top(a);
- return 1;
- }
- #endif
|