ec_mult.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. /*
  2. * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
  3. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
  4. *
  5. * Licensed under the Apache License 2.0 (the "License"). You may not use
  6. * this file except in compliance with the License. You can obtain a copy
  7. * in the file LICENSE in the source distribution or at
  8. * https://www.openssl.org/source/license.html
  9. */
  10. /*
  11. * ECDSA low level APIs are deprecated for public use, but still ok for
  12. * internal use.
  13. */
  14. #include "internal/deprecated.h"
  15. #include <string.h>
  16. #include <openssl/err.h>
  17. #include "internal/cryptlib.h"
  18. #include "crypto/bn.h"
  19. #include "ec_local.h"
  20. #include "internal/refcount.h"
  21. /*
  22. * This file implements the wNAF-based interleaving multi-exponentiation method
  23. * Formerly at:
  24. * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
  25. * You might now find it here:
  26. * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
  27. * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
  28. * For multiplication with precomputation, we use wNAF splitting, formerly at:
  29. * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
  30. */
  31. /* structure for precomputed multiples of the generator */
  32. struct ec_pre_comp_st {
  33. const EC_GROUP *group; /* parent EC_GROUP object */
  34. size_t blocksize; /* block size for wNAF splitting */
  35. size_t numblocks; /* max. number of blocks for which we have
  36. * precomputation */
  37. size_t w; /* window size */
  38. EC_POINT **points; /* array with pre-calculated multiples of
  39. * generator: 'num' pointers to EC_POINT
  40. * objects followed by a NULL */
  41. size_t num; /* numblocks * 2^(w-1) */
  42. CRYPTO_REF_COUNT references;
  43. CRYPTO_RWLOCK *lock;
  44. };
  45. static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
  46. {
  47. EC_PRE_COMP *ret = NULL;
  48. if (!group)
  49. return NULL;
  50. ret = OPENSSL_zalloc(sizeof(*ret));
  51. if (ret == NULL) {
  52. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  53. return ret;
  54. }
  55. ret->group = group;
  56. ret->blocksize = 8; /* default */
  57. ret->w = 4; /* default */
  58. ret->references = 1;
  59. ret->lock = CRYPTO_THREAD_lock_new();
  60. if (ret->lock == NULL) {
  61. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  62. OPENSSL_free(ret);
  63. return NULL;
  64. }
  65. return ret;
  66. }
  67. EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
  68. {
  69. int i;
  70. if (pre != NULL)
  71. CRYPTO_UP_REF(&pre->references, &i, pre->lock);
  72. return pre;
  73. }
  74. void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
  75. {
  76. int i;
  77. if (pre == NULL)
  78. return;
  79. CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
  80. REF_PRINT_COUNT("EC_ec", pre);
  81. if (i > 0)
  82. return;
  83. REF_ASSERT_ISNT(i < 0);
  84. if (pre->points != NULL) {
  85. EC_POINT **pts;
  86. for (pts = pre->points; *pts != NULL; pts++)
  87. EC_POINT_free(*pts);
  88. OPENSSL_free(pre->points);
  89. }
  90. CRYPTO_THREAD_lock_free(pre->lock);
  91. OPENSSL_free(pre);
  92. }
  93. #define EC_POINT_BN_set_flags(P, flags) do { \
  94. BN_set_flags((P)->X, (flags)); \
  95. BN_set_flags((P)->Y, (flags)); \
  96. BN_set_flags((P)->Z, (flags)); \
  97. } while(0)
  98. /*-
  99. * This functions computes a single point multiplication over the EC group,
  100. * using, at a high level, a Montgomery ladder with conditional swaps, with
  101. * various timing attack defenses.
  102. *
  103. * It performs either a fixed point multiplication
  104. * (scalar * generator)
  105. * when point is NULL, or a variable point multiplication
  106. * (scalar * point)
  107. * when point is not NULL.
  108. *
  109. * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
  110. * constant time bets are off (where n is the cardinality of the EC group).
  111. *
  112. * This function expects `group->order` and `group->cardinality` to be well
  113. * defined and non-zero: it fails with an error code otherwise.
  114. *
  115. * NB: This says nothing about the constant-timeness of the ladder step
  116. * implementation (i.e., the default implementation is based on EC_POINT_add and
  117. * EC_POINT_dbl, which of course are not constant time themselves) or the
  118. * underlying multiprecision arithmetic.
  119. *
  120. * The product is stored in `r`.
  121. *
  122. * This is an internal function: callers are in charge of ensuring that the
  123. * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
  124. *
  125. * Returns 1 on success, 0 otherwise.
  126. */
  127. int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
  128. const BIGNUM *scalar, const EC_POINT *point,
  129. BN_CTX *ctx)
  130. {
  131. int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
  132. EC_POINT *p = NULL;
  133. EC_POINT *s = NULL;
  134. BIGNUM *k = NULL;
  135. BIGNUM *lambda = NULL;
  136. BIGNUM *cardinality = NULL;
  137. int ret = 0;
  138. /* early exit if the input point is the point at infinity */
  139. if (point != NULL && EC_POINT_is_at_infinity(group, point))
  140. return EC_POINT_set_to_infinity(group, r);
  141. if (BN_is_zero(group->order)) {
  142. ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
  143. return 0;
  144. }
  145. if (BN_is_zero(group->cofactor)) {
  146. ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR);
  147. return 0;
  148. }
  149. BN_CTX_start(ctx);
  150. if (((p = EC_POINT_new(group)) == NULL)
  151. || ((s = EC_POINT_new(group)) == NULL)) {
  152. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  153. goto err;
  154. }
  155. if (point == NULL) {
  156. if (!EC_POINT_copy(p, group->generator)) {
  157. ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
  158. goto err;
  159. }
  160. } else {
  161. if (!EC_POINT_copy(p, point)) {
  162. ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
  163. goto err;
  164. }
  165. }
  166. EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
  167. EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
  168. EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
  169. cardinality = BN_CTX_get(ctx);
  170. lambda = BN_CTX_get(ctx);
  171. k = BN_CTX_get(ctx);
  172. if (k == NULL) {
  173. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  174. goto err;
  175. }
  176. if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
  177. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  178. goto err;
  179. }
  180. /*
  181. * Group cardinalities are often on a word boundary.
  182. * So when we pad the scalar, some timing diff might
  183. * pop if it needs to be expanded due to carries.
  184. * So expand ahead of time.
  185. */
  186. cardinality_bits = BN_num_bits(cardinality);
  187. group_top = bn_get_top(cardinality);
  188. if ((bn_wexpand(k, group_top + 2) == NULL)
  189. || (bn_wexpand(lambda, group_top + 2) == NULL)) {
  190. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  191. goto err;
  192. }
  193. if (!BN_copy(k, scalar)) {
  194. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  195. goto err;
  196. }
  197. BN_set_flags(k, BN_FLG_CONSTTIME);
  198. if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
  199. /*-
  200. * this is an unusual input, and we don't guarantee
  201. * constant-timeness
  202. */
  203. if (!BN_nnmod(k, k, cardinality, ctx)) {
  204. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  205. goto err;
  206. }
  207. }
  208. if (!BN_add(lambda, k, cardinality)) {
  209. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  210. goto err;
  211. }
  212. BN_set_flags(lambda, BN_FLG_CONSTTIME);
  213. if (!BN_add(k, lambda, cardinality)) {
  214. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  215. goto err;
  216. }
  217. /*
  218. * lambda := scalar + cardinality
  219. * k := scalar + 2*cardinality
  220. */
  221. kbit = BN_is_bit_set(lambda, cardinality_bits);
  222. BN_consttime_swap(kbit, k, lambda, group_top + 2);
  223. group_top = bn_get_top(group->field);
  224. if ((bn_wexpand(s->X, group_top) == NULL)
  225. || (bn_wexpand(s->Y, group_top) == NULL)
  226. || (bn_wexpand(s->Z, group_top) == NULL)
  227. || (bn_wexpand(r->X, group_top) == NULL)
  228. || (bn_wexpand(r->Y, group_top) == NULL)
  229. || (bn_wexpand(r->Z, group_top) == NULL)
  230. || (bn_wexpand(p->X, group_top) == NULL)
  231. || (bn_wexpand(p->Y, group_top) == NULL)
  232. || (bn_wexpand(p->Z, group_top) == NULL)) {
  233. ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
  234. goto err;
  235. }
  236. /* ensure input point is in affine coords for ladder step efficiency */
  237. if (!p->Z_is_one && (group->meth->make_affine == NULL
  238. || !group->meth->make_affine(group, p, ctx))) {
  239. ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
  240. goto err;
  241. }
  242. /* Initialize the Montgomery ladder */
  243. if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
  244. ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE);
  245. goto err;
  246. }
  247. /* top bit is a 1, in a fixed pos */
  248. pbit = 1;
  249. #define EC_POINT_CSWAP(c, a, b, w, t) do { \
  250. BN_consttime_swap(c, (a)->X, (b)->X, w); \
  251. BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
  252. BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
  253. t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
  254. (a)->Z_is_one ^= (t); \
  255. (b)->Z_is_one ^= (t); \
  256. } while(0)
  257. /*-
  258. * The ladder step, with branches, is
  259. *
  260. * k[i] == 0: S = add(R, S), R = dbl(R)
  261. * k[i] == 1: R = add(S, R), S = dbl(S)
  262. *
  263. * Swapping R, S conditionally on k[i] leaves you with state
  264. *
  265. * k[i] == 0: T, U = R, S
  266. * k[i] == 1: T, U = S, R
  267. *
  268. * Then perform the ECC ops.
  269. *
  270. * U = add(T, U)
  271. * T = dbl(T)
  272. *
  273. * Which leaves you with state
  274. *
  275. * k[i] == 0: U = add(R, S), T = dbl(R)
  276. * k[i] == 1: U = add(S, R), T = dbl(S)
  277. *
  278. * Swapping T, U conditionally on k[i] leaves you with state
  279. *
  280. * k[i] == 0: R, S = T, U
  281. * k[i] == 1: R, S = U, T
  282. *
  283. * Which leaves you with state
  284. *
  285. * k[i] == 0: S = add(R, S), R = dbl(R)
  286. * k[i] == 1: R = add(S, R), S = dbl(S)
  287. *
  288. * So we get the same logic, but instead of a branch it's a
  289. * conditional swap, followed by ECC ops, then another conditional swap.
  290. *
  291. * Optimization: The end of iteration i and start of i-1 looks like
  292. *
  293. * ...
  294. * CSWAP(k[i], R, S)
  295. * ECC
  296. * CSWAP(k[i], R, S)
  297. * (next iteration)
  298. * CSWAP(k[i-1], R, S)
  299. * ECC
  300. * CSWAP(k[i-1], R, S)
  301. * ...
  302. *
  303. * So instead of two contiguous swaps, you can merge the condition
  304. * bits and do a single swap.
  305. *
  306. * k[i] k[i-1] Outcome
  307. * 0 0 No Swap
  308. * 0 1 Swap
  309. * 1 0 Swap
  310. * 1 1 No Swap
  311. *
  312. * This is XOR. pbit tracks the previous bit of k.
  313. */
  314. for (i = cardinality_bits - 1; i >= 0; i--) {
  315. kbit = BN_is_bit_set(k, i) ^ pbit;
  316. EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
  317. /* Perform a single step of the Montgomery ladder */
  318. if (!ec_point_ladder_step(group, r, s, p, ctx)) {
  319. ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE);
  320. goto err;
  321. }
  322. /*
  323. * pbit logic merges this cswap with that of the
  324. * next iteration
  325. */
  326. pbit ^= kbit;
  327. }
  328. /* one final cswap to move the right value into r */
  329. EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
  330. #undef EC_POINT_CSWAP
  331. /* Finalize ladder (and recover full point coordinates) */
  332. if (!ec_point_ladder_post(group, r, s, p, ctx)) {
  333. ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE);
  334. goto err;
  335. }
  336. ret = 1;
  337. err:
  338. EC_POINT_free(p);
  339. EC_POINT_clear_free(s);
  340. BN_CTX_end(ctx);
  341. return ret;
  342. }
  343. #undef EC_POINT_BN_set_flags
  344. /*
  345. * Table could be optimised for the wNAF-based implementation,
  346. * sometimes smaller windows will give better performance (thus the
  347. * boundaries should be increased)
  348. */
  349. #define EC_window_bits_for_scalar_size(b) \
  350. ((size_t) \
  351. ((b) >= 2000 ? 6 : \
  352. (b) >= 800 ? 5 : \
  353. (b) >= 300 ? 4 : \
  354. (b) >= 70 ? 3 : \
  355. (b) >= 20 ? 2 : \
  356. 1))
  357. /*-
  358. * Compute
  359. * \sum scalars[i]*points[i],
  360. * also including
  361. * scalar*generator
  362. * in the addition if scalar != NULL
  363. */
  364. int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
  365. size_t num, const EC_POINT *points[],
  366. const BIGNUM *scalars[], BN_CTX *ctx)
  367. {
  368. const EC_POINT *generator = NULL;
  369. EC_POINT *tmp = NULL;
  370. size_t totalnum;
  371. size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
  372. size_t pre_points_per_block = 0;
  373. size_t i, j;
  374. int k;
  375. int r_is_inverted = 0;
  376. int r_is_at_infinity = 1;
  377. size_t *wsize = NULL; /* individual window sizes */
  378. signed char **wNAF = NULL; /* individual wNAFs */
  379. size_t *wNAF_len = NULL;
  380. size_t max_len = 0;
  381. size_t num_val;
  382. EC_POINT **val = NULL; /* precomputation */
  383. EC_POINT **v;
  384. EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
  385. * 'pre_comp->points' */
  386. const EC_PRE_COMP *pre_comp = NULL;
  387. int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
  388. * treated like other scalars, i.e.
  389. * precomputation is not available */
  390. int ret = 0;
  391. if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
  392. /*-
  393. * Handle the common cases where the scalar is secret, enforcing a
  394. * scalar multiplication implementation based on a Montgomery ladder,
  395. * with various timing attack defenses.
  396. */
  397. if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
  398. /*-
  399. * In this case we want to compute scalar * GeneratorPoint: this
  400. * codepath is reached most prominently by (ephemeral) key
  401. * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
  402. * ECDH keygen/first half), where the scalar is always secret. This
  403. * is why we ignore if BN_FLG_CONSTTIME is actually set and we
  404. * always call the ladder version.
  405. */
  406. return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
  407. }
  408. if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
  409. /*-
  410. * In this case we want to compute scalar * VariablePoint: this
  411. * codepath is reached most prominently by the second half of ECDH,
  412. * where the secret scalar is multiplied by the peer's public point.
  413. * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
  414. * actually set and we always call the ladder version.
  415. */
  416. return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0],
  417. ctx);
  418. }
  419. }
  420. if (scalar != NULL) {
  421. generator = EC_GROUP_get0_generator(group);
  422. if (generator == NULL) {
  423. ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
  424. goto err;
  425. }
  426. /* look if we can use precomputed multiples of generator */
  427. pre_comp = group->pre_comp.ec;
  428. if (pre_comp && pre_comp->numblocks
  429. && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
  430. 0)) {
  431. blocksize = pre_comp->blocksize;
  432. /*
  433. * determine maximum number of blocks that wNAF splitting may
  434. * yield (NB: maximum wNAF length is bit length plus one)
  435. */
  436. numblocks = (BN_num_bits(scalar) / blocksize) + 1;
  437. /*
  438. * we cannot use more blocks than we have precomputation for
  439. */
  440. if (numblocks > pre_comp->numblocks)
  441. numblocks = pre_comp->numblocks;
  442. pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
  443. /* check that pre_comp looks sane */
  444. if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
  445. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  446. goto err;
  447. }
  448. } else {
  449. /* can't use precomputation */
  450. pre_comp = NULL;
  451. numblocks = 1;
  452. num_scalar = 1; /* treat 'scalar' like 'num'-th element of
  453. * 'scalars' */
  454. }
  455. }
  456. totalnum = num + numblocks;
  457. wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
  458. wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
  459. /* include space for pivot */
  460. wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
  461. val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
  462. /* Ensure wNAF is initialised in case we end up going to err */
  463. if (wNAF != NULL)
  464. wNAF[0] = NULL; /* preliminary pivot */
  465. if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
  466. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  467. goto err;
  468. }
  469. /*
  470. * num_val will be the total number of temporarily precomputed points
  471. */
  472. num_val = 0;
  473. for (i = 0; i < num + num_scalar; i++) {
  474. size_t bits;
  475. bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
  476. wsize[i] = EC_window_bits_for_scalar_size(bits);
  477. num_val += (size_t)1 << (wsize[i] - 1);
  478. wNAF[i + 1] = NULL; /* make sure we always have a pivot */
  479. wNAF[i] =
  480. bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
  481. &wNAF_len[i]);
  482. if (wNAF[i] == NULL)
  483. goto err;
  484. if (wNAF_len[i] > max_len)
  485. max_len = wNAF_len[i];
  486. }
  487. if (numblocks) {
  488. /* we go here iff scalar != NULL */
  489. if (pre_comp == NULL) {
  490. if (num_scalar != 1) {
  491. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  492. goto err;
  493. }
  494. /* we have already generated a wNAF for 'scalar' */
  495. } else {
  496. signed char *tmp_wNAF = NULL;
  497. size_t tmp_len = 0;
  498. if (num_scalar != 0) {
  499. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  500. goto err;
  501. }
  502. /*
  503. * use the window size for which we have precomputation
  504. */
  505. wsize[num] = pre_comp->w;
  506. tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
  507. if (!tmp_wNAF)
  508. goto err;
  509. if (tmp_len <= max_len) {
  510. /*
  511. * One of the other wNAFs is at least as long as the wNAF
  512. * belonging to the generator, so wNAF splitting will not buy
  513. * us anything.
  514. */
  515. numblocks = 1;
  516. totalnum = num + 1; /* don't use wNAF splitting */
  517. wNAF[num] = tmp_wNAF;
  518. wNAF[num + 1] = NULL;
  519. wNAF_len[num] = tmp_len;
  520. /*
  521. * pre_comp->points starts with the points that we need here:
  522. */
  523. val_sub[num] = pre_comp->points;
  524. } else {
  525. /*
  526. * don't include tmp_wNAF directly into wNAF array - use wNAF
  527. * splitting and include the blocks
  528. */
  529. signed char *pp;
  530. EC_POINT **tmp_points;
  531. if (tmp_len < numblocks * blocksize) {
  532. /*
  533. * possibly we can do with fewer blocks than estimated
  534. */
  535. numblocks = (tmp_len + blocksize - 1) / blocksize;
  536. if (numblocks > pre_comp->numblocks) {
  537. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  538. OPENSSL_free(tmp_wNAF);
  539. goto err;
  540. }
  541. totalnum = num + numblocks;
  542. }
  543. /* split wNAF in 'numblocks' parts */
  544. pp = tmp_wNAF;
  545. tmp_points = pre_comp->points;
  546. for (i = num; i < totalnum; i++) {
  547. if (i < totalnum - 1) {
  548. wNAF_len[i] = blocksize;
  549. if (tmp_len < blocksize) {
  550. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  551. OPENSSL_free(tmp_wNAF);
  552. goto err;
  553. }
  554. tmp_len -= blocksize;
  555. } else
  556. /*
  557. * last block gets whatever is left (this could be
  558. * more or less than 'blocksize'!)
  559. */
  560. wNAF_len[i] = tmp_len;
  561. wNAF[i + 1] = NULL;
  562. wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
  563. if (wNAF[i] == NULL) {
  564. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  565. OPENSSL_free(tmp_wNAF);
  566. goto err;
  567. }
  568. memcpy(wNAF[i], pp, wNAF_len[i]);
  569. if (wNAF_len[i] > max_len)
  570. max_len = wNAF_len[i];
  571. if (*tmp_points == NULL) {
  572. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  573. OPENSSL_free(tmp_wNAF);
  574. goto err;
  575. }
  576. val_sub[i] = tmp_points;
  577. tmp_points += pre_points_per_block;
  578. pp += blocksize;
  579. }
  580. OPENSSL_free(tmp_wNAF);
  581. }
  582. }
  583. }
  584. /*
  585. * All points we precompute now go into a single array 'val'.
  586. * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
  587. * subarray of 'pre_comp->points' if we already have precomputation.
  588. */
  589. val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
  590. if (val == NULL) {
  591. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  592. goto err;
  593. }
  594. val[num_val] = NULL; /* pivot element */
  595. /* allocate points for precomputation */
  596. v = val;
  597. for (i = 0; i < num + num_scalar; i++) {
  598. val_sub[i] = v;
  599. for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  600. *v = EC_POINT_new(group);
  601. if (*v == NULL)
  602. goto err;
  603. v++;
  604. }
  605. }
  606. if (!(v == val + num_val)) {
  607. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  608. goto err;
  609. }
  610. if ((tmp = EC_POINT_new(group)) == NULL)
  611. goto err;
  612. /*-
  613. * prepare precomputed values:
  614. * val_sub[i][0] := points[i]
  615. * val_sub[i][1] := 3 * points[i]
  616. * val_sub[i][2] := 5 * points[i]
  617. * ...
  618. */
  619. for (i = 0; i < num + num_scalar; i++) {
  620. if (i < num) {
  621. if (!EC_POINT_copy(val_sub[i][0], points[i]))
  622. goto err;
  623. } else {
  624. if (!EC_POINT_copy(val_sub[i][0], generator))
  625. goto err;
  626. }
  627. if (wsize[i] > 1) {
  628. if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
  629. goto err;
  630. for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  631. if (!EC_POINT_add
  632. (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
  633. goto err;
  634. }
  635. }
  636. }
  637. if (group->meth->points_make_affine == NULL
  638. || !group->meth->points_make_affine(group, num_val, val, ctx))
  639. goto err;
  640. r_is_at_infinity = 1;
  641. for (k = max_len - 1; k >= 0; k--) {
  642. if (!r_is_at_infinity) {
  643. if (!EC_POINT_dbl(group, r, r, ctx))
  644. goto err;
  645. }
  646. for (i = 0; i < totalnum; i++) {
  647. if (wNAF_len[i] > (size_t)k) {
  648. int digit = wNAF[i][k];
  649. int is_neg;
  650. if (digit) {
  651. is_neg = digit < 0;
  652. if (is_neg)
  653. digit = -digit;
  654. if (is_neg != r_is_inverted) {
  655. if (!r_is_at_infinity) {
  656. if (!EC_POINT_invert(group, r, ctx))
  657. goto err;
  658. }
  659. r_is_inverted = !r_is_inverted;
  660. }
  661. /* digit > 0 */
  662. if (r_is_at_infinity) {
  663. if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
  664. goto err;
  665. /*-
  666. * Apply coordinate blinding for EC_POINT.
  667. *
  668. * The underlying EC_METHOD can optionally implement this function:
  669. * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on
  670. * success or if coordinate blinding is not implemented for this
  671. * group.
  672. */
  673. if (!ossl_ec_point_blind_coordinates(group, r, ctx)) {
  674. ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE);
  675. goto err;
  676. }
  677. r_is_at_infinity = 0;
  678. } else {
  679. if (!EC_POINT_add
  680. (group, r, r, val_sub[i][digit >> 1], ctx))
  681. goto err;
  682. }
  683. }
  684. }
  685. }
  686. }
  687. if (r_is_at_infinity) {
  688. if (!EC_POINT_set_to_infinity(group, r))
  689. goto err;
  690. } else {
  691. if (r_is_inverted)
  692. if (!EC_POINT_invert(group, r, ctx))
  693. goto err;
  694. }
  695. ret = 1;
  696. err:
  697. EC_POINT_free(tmp);
  698. OPENSSL_free(wsize);
  699. OPENSSL_free(wNAF_len);
  700. if (wNAF != NULL) {
  701. signed char **w;
  702. for (w = wNAF; *w != NULL; w++)
  703. OPENSSL_free(*w);
  704. OPENSSL_free(wNAF);
  705. }
  706. if (val != NULL) {
  707. for (v = val; *v != NULL; v++)
  708. EC_POINT_clear_free(*v);
  709. OPENSSL_free(val);
  710. }
  711. OPENSSL_free(val_sub);
  712. return ret;
  713. }
  714. /*-
  715. * ossl_ec_wNAF_precompute_mult()
  716. * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
  717. * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul().
  718. *
  719. * 'pre_comp->points' is an array of multiples of the generator
  720. * of the following form:
  721. * points[0] = generator;
  722. * points[1] = 3 * generator;
  723. * ...
  724. * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
  725. * points[2^(w-1)] = 2^blocksize * generator;
  726. * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
  727. * ...
  728. * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
  729. * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
  730. * ...
  731. * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
  732. * points[2^(w-1)*numblocks] = NULL
  733. */
  734. int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
  735. {
  736. const EC_POINT *generator;
  737. EC_POINT *tmp_point = NULL, *base = NULL, **var;
  738. const BIGNUM *order;
  739. size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
  740. EC_POINT **points = NULL;
  741. EC_PRE_COMP *pre_comp;
  742. int ret = 0;
  743. int used_ctx = 0;
  744. #ifndef FIPS_MODULE
  745. BN_CTX *new_ctx = NULL;
  746. #endif
  747. /* if there is an old EC_PRE_COMP object, throw it away */
  748. EC_pre_comp_free(group);
  749. if ((pre_comp = ec_pre_comp_new(group)) == NULL)
  750. return 0;
  751. generator = EC_GROUP_get0_generator(group);
  752. if (generator == NULL) {
  753. ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
  754. goto err;
  755. }
  756. #ifndef FIPS_MODULE
  757. if (ctx == NULL)
  758. ctx = new_ctx = BN_CTX_new();
  759. #endif
  760. if (ctx == NULL)
  761. goto err;
  762. BN_CTX_start(ctx);
  763. used_ctx = 1;
  764. order = EC_GROUP_get0_order(group);
  765. if (order == NULL)
  766. goto err;
  767. if (BN_is_zero(order)) {
  768. ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
  769. goto err;
  770. }
  771. bits = BN_num_bits(order);
  772. /*
  773. * The following parameters mean we precompute (approximately) one point
  774. * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
  775. * bit lengths, other parameter combinations might provide better
  776. * efficiency.
  777. */
  778. blocksize = 8;
  779. w = 4;
  780. if (EC_window_bits_for_scalar_size(bits) > w) {
  781. /* let's not make the window too small ... */
  782. w = EC_window_bits_for_scalar_size(bits);
  783. }
  784. numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
  785. * to use for wNAF
  786. * splitting */
  787. pre_points_per_block = (size_t)1 << (w - 1);
  788. num = pre_points_per_block * numblocks; /* number of points to compute
  789. * and store */
  790. points = OPENSSL_malloc(sizeof(*points) * (num + 1));
  791. if (points == NULL) {
  792. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  793. goto err;
  794. }
  795. var = points;
  796. var[num] = NULL; /* pivot */
  797. for (i = 0; i < num; i++) {
  798. if ((var[i] = EC_POINT_new(group)) == NULL) {
  799. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  800. goto err;
  801. }
  802. }
  803. if ((tmp_point = EC_POINT_new(group)) == NULL
  804. || (base = EC_POINT_new(group)) == NULL) {
  805. ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
  806. goto err;
  807. }
  808. if (!EC_POINT_copy(base, generator))
  809. goto err;
  810. /* do the precomputation */
  811. for (i = 0; i < numblocks; i++) {
  812. size_t j;
  813. if (!EC_POINT_dbl(group, tmp_point, base, ctx))
  814. goto err;
  815. if (!EC_POINT_copy(*var++, base))
  816. goto err;
  817. for (j = 1; j < pre_points_per_block; j++, var++) {
  818. /*
  819. * calculate odd multiples of the current base point
  820. */
  821. if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
  822. goto err;
  823. }
  824. if (i < numblocks - 1) {
  825. /*
  826. * get the next base (multiply current one by 2^blocksize)
  827. */
  828. size_t k;
  829. if (blocksize <= 2) {
  830. ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
  831. goto err;
  832. }
  833. if (!EC_POINT_dbl(group, base, tmp_point, ctx))
  834. goto err;
  835. for (k = 2; k < blocksize; k++) {
  836. if (!EC_POINT_dbl(group, base, base, ctx))
  837. goto err;
  838. }
  839. }
  840. }
  841. if (group->meth->points_make_affine == NULL
  842. || !group->meth->points_make_affine(group, num, points, ctx))
  843. goto err;
  844. pre_comp->group = group;
  845. pre_comp->blocksize = blocksize;
  846. pre_comp->numblocks = numblocks;
  847. pre_comp->w = w;
  848. pre_comp->points = points;
  849. points = NULL;
  850. pre_comp->num = num;
  851. SETPRECOMP(group, ec, pre_comp);
  852. pre_comp = NULL;
  853. ret = 1;
  854. err:
  855. if (used_ctx)
  856. BN_CTX_end(ctx);
  857. #ifndef FIPS_MODULE
  858. BN_CTX_free(new_ctx);
  859. #endif
  860. EC_ec_pre_comp_free(pre_comp);
  861. if (points) {
  862. EC_POINT **p;
  863. for (p = points; *p != NULL; p++)
  864. EC_POINT_free(*p);
  865. OPENSSL_free(points);
  866. }
  867. EC_POINT_free(tmp_point);
  868. EC_POINT_free(base);
  869. return ret;
  870. }
  871. int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group)
  872. {
  873. return HAVEPRECOMP(group, ec);
  874. }