bn_x931p.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /* bn_x931p.c */
  2. /*
  3. * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
  4. * 2005.
  5. */
  6. /* ====================================================================
  7. * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. *
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. *
  16. * 2. Redistributions in binary form must reproduce the above copyright
  17. * notice, this list of conditions and the following disclaimer in
  18. * the documentation and/or other materials provided with the
  19. * distribution.
  20. *
  21. * 3. All advertising materials mentioning features or use of this
  22. * software must display the following acknowledgment:
  23. * "This product includes software developed by the OpenSSL Project
  24. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  25. *
  26. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  27. * endorse or promote products derived from this software without
  28. * prior written permission. For written permission, please contact
  29. * licensing@OpenSSL.org.
  30. *
  31. * 5. Products derived from this software may not be called "OpenSSL"
  32. * nor may "OpenSSL" appear in their names without prior written
  33. * permission of the OpenSSL Project.
  34. *
  35. * 6. Redistributions of any form whatsoever must retain the following
  36. * acknowledgment:
  37. * "This product includes software developed by the OpenSSL Project
  38. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  41. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  43. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  44. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  45. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  46. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  49. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  50. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  51. * OF THE POSSIBILITY OF SUCH DAMAGE.
  52. * ====================================================================
  53. *
  54. * This product includes cryptographic software written by Eric Young
  55. * (eay@cryptsoft.com). This product includes software written by Tim
  56. * Hudson (tjh@cryptsoft.com).
  57. *
  58. */
  59. #include <stdio.h>
  60. #include <openssl/bn.h>
  61. #include "bn_lcl.h"
  62. /* X9.31 routines for prime derivation */
  63. /*
  64. * X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
  65. * q1, q2) from a parameter Xpi by checking successive odd integers.
  66. */
  67. static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
  68. BN_GENCB *cb)
  69. {
  70. int i = 0;
  71. if (!BN_copy(pi, Xpi))
  72. return 0;
  73. if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
  74. return 0;
  75. for (;;) {
  76. i++;
  77. BN_GENCB_call(cb, 0, i);
  78. /* NB 27 MR is specificed in X9.31 */
  79. if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
  80. break;
  81. if (!BN_add_word(pi, 2))
  82. return 0;
  83. }
  84. BN_GENCB_call(cb, 2, i);
  85. return 1;
  86. }
  87. /*
  88. * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
  89. * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
  90. * will be returned too: this is needed for testing.
  91. */
  92. int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
  93. const BIGNUM *Xp, const BIGNUM *Xp1,
  94. const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
  95. BN_GENCB *cb)
  96. {
  97. int ret = 0;
  98. BIGNUM *t, *p1p2, *pm1;
  99. /* Only even e supported */
  100. if (!BN_is_odd(e))
  101. return 0;
  102. BN_CTX_start(ctx);
  103. if (!p1)
  104. p1 = BN_CTX_get(ctx);
  105. if (!p2)
  106. p2 = BN_CTX_get(ctx);
  107. t = BN_CTX_get(ctx);
  108. p1p2 = BN_CTX_get(ctx);
  109. pm1 = BN_CTX_get(ctx);
  110. if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
  111. goto err;
  112. if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
  113. goto err;
  114. if (!BN_mul(p1p2, p1, p2, ctx))
  115. goto err;
  116. /* First set p to value of Rp */
  117. if (!BN_mod_inverse(p, p2, p1, ctx))
  118. goto err;
  119. if (!BN_mul(p, p, p2, ctx))
  120. goto err;
  121. if (!BN_mod_inverse(t, p1, p2, ctx))
  122. goto err;
  123. if (!BN_mul(t, t, p1, ctx))
  124. goto err;
  125. if (!BN_sub(p, p, t))
  126. goto err;
  127. if (p->neg && !BN_add(p, p, p1p2))
  128. goto err;
  129. /* p now equals Rp */
  130. if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
  131. goto err;
  132. if (!BN_add(p, p, Xp))
  133. goto err;
  134. /* p now equals Yp0 */
  135. for (;;) {
  136. int i = 1;
  137. BN_GENCB_call(cb, 0, i++);
  138. if (!BN_copy(pm1, p))
  139. goto err;
  140. if (!BN_sub_word(pm1, 1))
  141. goto err;
  142. if (!BN_gcd(t, pm1, e, ctx))
  143. goto err;
  144. if (BN_is_one(t)
  145. /*
  146. * X9.31 specifies 8 MR and 1 Lucas test or any prime test
  147. * offering similar or better guarantees 50 MR is considerably
  148. * better.
  149. */
  150. && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
  151. break;
  152. if (!BN_add(p, p, p1p2))
  153. goto err;
  154. }
  155. BN_GENCB_call(cb, 3, 0);
  156. ret = 1;
  157. err:
  158. BN_CTX_end(ctx);
  159. return ret;
  160. }
  161. /*
  162. * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
  163. * parameter is sum of number of bits in both.
  164. */
  165. int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
  166. {
  167. BIGNUM *t;
  168. int i;
  169. /*
  170. * Number of bits for each prime is of the form 512+128s for s = 0, 1,
  171. * ...
  172. */
  173. if ((nbits < 1024) || (nbits & 0xff))
  174. return 0;
  175. nbits >>= 1;
  176. /*
  177. * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
  178. * - 1. By setting the top two bits we ensure that the lower bound is
  179. * exceeded.
  180. */
  181. if (!BN_rand(Xp, nbits, 1, 0))
  182. goto err;
  183. BN_CTX_start(ctx);
  184. t = BN_CTX_get(ctx);
  185. for (i = 0; i < 1000; i++) {
  186. if (!BN_rand(Xq, nbits, 1, 0))
  187. goto err;
  188. /* Check that |Xp - Xq| > 2^(nbits - 100) */
  189. BN_sub(t, Xp, Xq);
  190. if (BN_num_bits(t) > (nbits - 100))
  191. break;
  192. }
  193. BN_CTX_end(ctx);
  194. if (i < 1000)
  195. return 1;
  196. return 0;
  197. err:
  198. BN_CTX_end(ctx);
  199. return 0;
  200. }
  201. /*
  202. * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
  203. * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
  204. * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
  205. * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
  206. * previous function and supplied as input.
  207. */
  208. int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
  209. BIGNUM *Xp1, BIGNUM *Xp2,
  210. const BIGNUM *Xp,
  211. const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
  212. {
  213. int ret = 0;
  214. BN_CTX_start(ctx);
  215. if (!Xp1)
  216. Xp1 = BN_CTX_get(ctx);
  217. if (!Xp2)
  218. Xp2 = BN_CTX_get(ctx);
  219. if (!BN_rand(Xp1, 101, 0, 0))
  220. goto error;
  221. if (!BN_rand(Xp2, 101, 0, 0))
  222. goto error;
  223. if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
  224. goto error;
  225. ret = 1;
  226. error:
  227. BN_CTX_end(ctx);
  228. return ret;
  229. }