md_rand.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. /* crypto/rand/md_rand.c */
  2. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young (eay@cryptsoft.com).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young (eay@cryptsoft.com)"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.]
  57. */
  58. /* ====================================================================
  59. * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
  60. *
  61. * Redistribution and use in source and binary forms, with or without
  62. * modification, are permitted provided that the following conditions
  63. * are met:
  64. *
  65. * 1. Redistributions of source code must retain the above copyright
  66. * notice, this list of conditions and the following disclaimer.
  67. *
  68. * 2. Redistributions in binary form must reproduce the above copyright
  69. * notice, this list of conditions and the following disclaimer in
  70. * the documentation and/or other materials provided with the
  71. * distribution.
  72. *
  73. * 3. All advertising materials mentioning features or use of this
  74. * software must display the following acknowledgment:
  75. * "This product includes software developed by the OpenSSL Project
  76. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  77. *
  78. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  79. * endorse or promote products derived from this software without
  80. * prior written permission. For written permission, please contact
  81. * openssl-core@openssl.org.
  82. *
  83. * 5. Products derived from this software may not be called "OpenSSL"
  84. * nor may "OpenSSL" appear in their names without prior written
  85. * permission of the OpenSSL Project.
  86. *
  87. * 6. Redistributions of any form whatsoever must retain the following
  88. * acknowledgment:
  89. * "This product includes software developed by the OpenSSL Project
  90. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  91. *
  92. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  93. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  94. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  95. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  96. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  97. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  98. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  99. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  100. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  101. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  102. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  103. * OF THE POSSIBILITY OF SUCH DAMAGE.
  104. * ====================================================================
  105. *
  106. * This product includes cryptographic software written by Eric Young
  107. * (eay@cryptsoft.com). This product includes software written by Tim
  108. * Hudson (tjh@cryptsoft.com).
  109. *
  110. */
  111. #ifdef MD_RAND_DEBUG
  112. # ifndef NDEBUG
  113. # define NDEBUG
  114. # endif
  115. #endif
  116. #include <assert.h>
  117. #include <stdio.h>
  118. #include <string.h>
  119. #include "e_os.h"
  120. #include <openssl/rand.h>
  121. #include "rand_lcl.h"
  122. #include <openssl/crypto.h>
  123. #include <openssl/err.h>
  124. #ifdef BN_DEBUG
  125. # define PREDICT
  126. #endif
  127. /* #define PREDICT 1 */
  128. #define STATE_SIZE 1023
  129. static int state_num=0,state_index=0;
  130. static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
  131. static unsigned char md[MD_DIGEST_LENGTH];
  132. static long md_count[2]={0,0};
  133. static double entropy=0;
  134. static int initialized=0;
  135. static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
  136. * holds CRYPTO_LOCK_RAND
  137. * (to prevent double locking) */
  138. /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
  139. static CRYPTO_THREADID locking_tid;
  140. #ifdef PREDICT
  141. int rand_predictable=0;
  142. #endif
  143. const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
  144. static void ssleay_rand_cleanup(void);
  145. static void ssleay_rand_seed(const void *buf, int num);
  146. static void ssleay_rand_add(const void *buf, int num, double add_entropy);
  147. static int ssleay_rand_bytes(unsigned char *buf, int num);
  148. static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
  149. static int ssleay_rand_status(void);
  150. RAND_METHOD rand_ssleay_meth={
  151. ssleay_rand_seed,
  152. ssleay_rand_bytes,
  153. ssleay_rand_cleanup,
  154. ssleay_rand_add,
  155. ssleay_rand_pseudo_bytes,
  156. ssleay_rand_status
  157. };
  158. RAND_METHOD *RAND_SSLeay(void)
  159. {
  160. return(&rand_ssleay_meth);
  161. }
  162. static void ssleay_rand_cleanup(void)
  163. {
  164. OPENSSL_cleanse(state,sizeof(state));
  165. state_num=0;
  166. state_index=0;
  167. OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
  168. md_count[0]=0;
  169. md_count[1]=0;
  170. entropy=0;
  171. initialized=0;
  172. }
  173. static void ssleay_rand_add(const void *buf, int num, double add)
  174. {
  175. int i,j,k,st_idx;
  176. long md_c[2];
  177. unsigned char local_md[MD_DIGEST_LENGTH];
  178. EVP_MD_CTX m;
  179. int do_not_lock;
  180. /*
  181. * (Based on the rand(3) manpage)
  182. *
  183. * The input is chopped up into units of 20 bytes (or less for
  184. * the last block). Each of these blocks is run through the hash
  185. * function as follows: The data passed to the hash function
  186. * is the current 'md', the same number of bytes from the 'state'
  187. * (the location determined by in incremented looping index) as
  188. * the current 'block', the new key data 'block', and 'count'
  189. * (which is incremented after each use).
  190. * The result of this is kept in 'md' and also xored into the
  191. * 'state' at the same locations that were used as input into the
  192. * hash function.
  193. */
  194. /* check if we already have the lock */
  195. if (crypto_lock_rand)
  196. {
  197. CRYPTO_THREADID tid;
  198. CRYPTO_THREADID_set(&tid);
  199. CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
  200. do_not_lock = !CRYPTO_THREADID_cmp(&locking_tid, &tid);
  201. CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
  202. }
  203. else
  204. do_not_lock = 0;
  205. if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
  206. st_idx=state_index;
  207. /* use our own copies of the counters so that even
  208. * if a concurrent thread seeds with exactly the
  209. * same data and uses the same subarray there's _some_
  210. * difference */
  211. md_c[0] = md_count[0];
  212. md_c[1] = md_count[1];
  213. memcpy(local_md, md, sizeof md);
  214. /* state_index <= state_num <= STATE_SIZE */
  215. state_index += num;
  216. if (state_index >= STATE_SIZE)
  217. {
  218. state_index%=STATE_SIZE;
  219. state_num=STATE_SIZE;
  220. }
  221. else if (state_num < STATE_SIZE)
  222. {
  223. if (state_index > state_num)
  224. state_num=state_index;
  225. }
  226. /* state_index <= state_num <= STATE_SIZE */
  227. /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
  228. * are what we will use now, but other threads may use them
  229. * as well */
  230. md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
  231. if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
  232. EVP_MD_CTX_init(&m);
  233. for (i=0; i<num; i+=MD_DIGEST_LENGTH)
  234. {
  235. j=(num-i);
  236. j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
  237. MD_Init(&m);
  238. MD_Update(&m,local_md,MD_DIGEST_LENGTH);
  239. k=(st_idx+j)-STATE_SIZE;
  240. if (k > 0)
  241. {
  242. MD_Update(&m,&(state[st_idx]),j-k);
  243. MD_Update(&m,&(state[0]),k);
  244. }
  245. else
  246. MD_Update(&m,&(state[st_idx]),j);
  247. MD_Update(&m,buf,j);
  248. MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
  249. MD_Final(&m,local_md);
  250. md_c[1]++;
  251. buf=(const char *)buf + j;
  252. for (k=0; k<j; k++)
  253. {
  254. /* Parallel threads may interfere with this,
  255. * but always each byte of the new state is
  256. * the XOR of some previous value of its
  257. * and local_md (itermediate values may be lost).
  258. * Alway using locking could hurt performance more
  259. * than necessary given that conflicts occur only
  260. * when the total seeding is longer than the random
  261. * state. */
  262. state[st_idx++]^=local_md[k];
  263. if (st_idx >= STATE_SIZE)
  264. st_idx=0;
  265. }
  266. }
  267. EVP_MD_CTX_cleanup(&m);
  268. if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
  269. /* Don't just copy back local_md into md -- this could mean that
  270. * other thread's seeding remains without effect (except for
  271. * the incremented counter). By XORing it we keep at least as
  272. * much entropy as fits into md. */
  273. for (k = 0; k < (int)sizeof(md); k++)
  274. {
  275. md[k] ^= local_md[k];
  276. }
  277. if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
  278. entropy += add;
  279. if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
  280. #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
  281. assert(md_c[1] == md_count[1]);
  282. #endif
  283. }
  284. static void ssleay_rand_seed(const void *buf, int num)
  285. {
  286. ssleay_rand_add(buf, num, (double)num);
  287. }
  288. static int ssleay_rand_bytes(unsigned char *buf, int num)
  289. {
  290. static volatile int stirred_pool = 0;
  291. int i,j,k,st_num,st_idx;
  292. int num_ceil;
  293. int ok;
  294. long md_c[2];
  295. unsigned char local_md[MD_DIGEST_LENGTH];
  296. EVP_MD_CTX m;
  297. #ifndef GETPID_IS_MEANINGLESS
  298. pid_t curr_pid = getpid();
  299. #endif
  300. int do_stir_pool = 0;
  301. #ifdef PREDICT
  302. if (rand_predictable)
  303. {
  304. static unsigned char val=0;
  305. for (i=0; i<num; i++)
  306. buf[i]=val++;
  307. return(1);
  308. }
  309. #endif
  310. if (num <= 0)
  311. return 1;
  312. EVP_MD_CTX_init(&m);
  313. /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
  314. num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
  315. /*
  316. * (Based on the rand(3) manpage:)
  317. *
  318. * For each group of 10 bytes (or less), we do the following:
  319. *
  320. * Input into the hash function the local 'md' (which is initialized from
  321. * the global 'md' before any bytes are generated), the bytes that are to
  322. * be overwritten by the random bytes, and bytes from the 'state'
  323. * (incrementing looping index). From this digest output (which is kept
  324. * in 'md'), the top (up to) 10 bytes are returned to the caller and the
  325. * bottom 10 bytes are xored into the 'state'.
  326. *
  327. * Finally, after we have finished 'num' random bytes for the
  328. * caller, 'count' (which is incremented) and the local and global 'md'
  329. * are fed into the hash function and the results are kept in the
  330. * global 'md'.
  331. */
  332. CRYPTO_w_lock(CRYPTO_LOCK_RAND);
  333. /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
  334. CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
  335. CRYPTO_THREADID_set(&locking_tid);
  336. CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
  337. crypto_lock_rand = 1;
  338. if (!initialized)
  339. {
  340. RAND_poll();
  341. initialized = 1;
  342. }
  343. if (!stirred_pool)
  344. do_stir_pool = 1;
  345. ok = (entropy >= ENTROPY_NEEDED);
  346. if (!ok)
  347. {
  348. /* If the PRNG state is not yet unpredictable, then seeing
  349. * the PRNG output may help attackers to determine the new
  350. * state; thus we have to decrease the entropy estimate.
  351. * Once we've had enough initial seeding we don't bother to
  352. * adjust the entropy count, though, because we're not ambitious
  353. * to provide *information-theoretic* randomness.
  354. *
  355. * NOTE: This approach fails if the program forks before
  356. * we have enough entropy. Entropy should be collected
  357. * in a separate input pool and be transferred to the
  358. * output pool only when the entropy limit has been reached.
  359. */
  360. entropy -= num;
  361. if (entropy < 0)
  362. entropy = 0;
  363. }
  364. if (do_stir_pool)
  365. {
  366. /* In the output function only half of 'md' remains secret,
  367. * so we better make sure that the required entropy gets
  368. * 'evenly distributed' through 'state', our randomness pool.
  369. * The input function (ssleay_rand_add) chains all of 'md',
  370. * which makes it more suitable for this purpose.
  371. */
  372. int n = STATE_SIZE; /* so that the complete pool gets accessed */
  373. while (n > 0)
  374. {
  375. #if MD_DIGEST_LENGTH > 20
  376. # error "Please adjust DUMMY_SEED."
  377. #endif
  378. #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
  379. /* Note that the seed does not matter, it's just that
  380. * ssleay_rand_add expects to have something to hash. */
  381. ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
  382. n -= MD_DIGEST_LENGTH;
  383. }
  384. if (ok)
  385. stirred_pool = 1;
  386. }
  387. st_idx=state_index;
  388. st_num=state_num;
  389. md_c[0] = md_count[0];
  390. md_c[1] = md_count[1];
  391. memcpy(local_md, md, sizeof md);
  392. state_index+=num_ceil;
  393. if (state_index > state_num)
  394. state_index %= state_num;
  395. /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
  396. * are now ours (but other threads may use them too) */
  397. md_count[0] += 1;
  398. /* before unlocking, we must clear 'crypto_lock_rand' */
  399. crypto_lock_rand = 0;
  400. CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
  401. while (num > 0)
  402. {
  403. /* num_ceil -= MD_DIGEST_LENGTH/2 */
  404. j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
  405. num-=j;
  406. MD_Init(&m);
  407. #ifndef GETPID_IS_MEANINGLESS
  408. if (curr_pid) /* just in the first iteration to save time */
  409. {
  410. MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
  411. curr_pid = 0;
  412. }
  413. #endif
  414. MD_Update(&m,local_md,MD_DIGEST_LENGTH);
  415. MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
  416. #ifndef PURIFY
  417. MD_Update(&m,buf,j); /* purify complains */
  418. #endif
  419. k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
  420. if (k > 0)
  421. {
  422. MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
  423. MD_Update(&m,&(state[0]),k);
  424. }
  425. else
  426. MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
  427. MD_Final(&m,local_md);
  428. for (i=0; i<MD_DIGEST_LENGTH/2; i++)
  429. {
  430. state[st_idx++]^=local_md[i]; /* may compete with other threads */
  431. if (st_idx >= st_num)
  432. st_idx=0;
  433. if (i < j)
  434. *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
  435. }
  436. }
  437. MD_Init(&m);
  438. MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
  439. MD_Update(&m,local_md,MD_DIGEST_LENGTH);
  440. CRYPTO_w_lock(CRYPTO_LOCK_RAND);
  441. MD_Update(&m,md,MD_DIGEST_LENGTH);
  442. MD_Final(&m,md);
  443. CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
  444. EVP_MD_CTX_cleanup(&m);
  445. if (ok)
  446. return(1);
  447. else
  448. {
  449. RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
  450. ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
  451. "http://www.openssl.org/support/faq.html");
  452. return(0);
  453. }
  454. }
  455. /* pseudo-random bytes that are guaranteed to be unique but not
  456. unpredictable */
  457. static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
  458. {
  459. int ret;
  460. unsigned long err;
  461. ret = RAND_bytes(buf, num);
  462. if (ret == 0)
  463. {
  464. err = ERR_peek_error();
  465. if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
  466. ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
  467. ERR_clear_error();
  468. }
  469. return (ret);
  470. }
  471. static int ssleay_rand_status(void)
  472. {
  473. int ret;
  474. int do_not_lock;
  475. /* check if we already have the lock
  476. * (could happen if a RAND_poll() implementation calls RAND_status()) */
  477. if (crypto_lock_rand)
  478. {
  479. CRYPTO_THREADID tid;
  480. CRYPTO_THREADID_set(&tid);
  481. CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
  482. do_not_lock = !CRYPTO_THREADID_cmp(&locking_tid, &tid);
  483. CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
  484. }
  485. else
  486. do_not_lock = 0;
  487. if (!do_not_lock)
  488. {
  489. CRYPTO_w_lock(CRYPTO_LOCK_RAND);
  490. /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
  491. CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
  492. CRYPTO_THREADID_set(&locking_tid);
  493. CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
  494. crypto_lock_rand = 1;
  495. }
  496. if (!initialized)
  497. {
  498. RAND_poll();
  499. initialized = 1;
  500. }
  501. ret = entropy >= ENTROPY_NEEDED;
  502. if (!do_not_lock)
  503. {
  504. /* before unlocking, we must clear 'crypto_lock_rand' */
  505. crypto_lock_rand = 0;
  506. CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
  507. }
  508. return ret;
  509. }