sha512.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
  1. /* crypto/sha/sha512.c */
  2. /* ====================================================================
  3. * Copyright (c) 2004 The OpenSSL Project. All rights reserved
  4. * according to the OpenSSL license [found in ../../LICENSE].
  5. * ====================================================================
  6. */
  7. #include <openssl/opensslconf.h>
  8. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
  9. /*
  10. * IMPLEMENTATION NOTES.
  11. *
  12. * As you might have noticed 32-bit hash algorithms:
  13. *
  14. * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
  15. * - optimized versions implement two transform functions: one operating
  16. * on [aligned] data in host byte order and one - on data in input
  17. * stream byte order;
  18. * - share common byte-order neutral collector and padding function
  19. * implementations, ../md32_common.h;
  20. *
  21. * Neither of the above applies to this SHA-512 implementations. Reasons
  22. * [in reverse order] are:
  23. *
  24. * - it's the only 64-bit hash algorithm for the moment of this writing,
  25. * there is no need for common collector/padding implementation [yet];
  26. * - by supporting only one transform function [which operates on
  27. * *aligned* data in input stream byte order, big-endian in this case]
  28. * we minimize burden of maintenance in two ways: a) collector/padding
  29. * function is simpler; b) only one transform function to stare at;
  30. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  31. * apply a number of optimizations to mitigate potential performance
  32. * penalties caused by previous design decision;
  33. *
  34. * Caveat lector.
  35. *
  36. * Implementation relies on the fact that "long long" is 64-bit on
  37. * both 32- and 64-bit platforms. If some compiler vendor comes up
  38. * with 128-bit long long, adjustment to sha.h would be required.
  39. * As this implementation relies on 64-bit integer type, it's totally
  40. * inappropriate for platforms which don't support it, most notably
  41. * 16-bit platforms.
  42. * <appro@fy.chalmers.se>
  43. */
  44. #include <stdlib.h>
  45. #include <string.h>
  46. #include <openssl/crypto.h>
  47. #include <openssl/sha.h>
  48. #include <openssl/opensslv.h>
  49. #include "cryptlib.h"
  50. const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;
  51. #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  52. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  53. defined(__s390__) || defined(__s390x__) || \
  54. defined(SHA512_ASM)
  55. #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  56. #endif
  57. int SHA384_Init (SHA512_CTX *c)
  58. {
  59. #if defined(SHA512_ASM) && (defined(__arm__) || defined(__arm))
  60. /* maintain dword order required by assembler module */
  61. unsigned int *h = (unsigned int *)c->h;
  62. h[0] = 0xcbbb9d5d; h[1] = 0xc1059ed8;
  63. h[2] = 0x629a292a; h[3] = 0x367cd507;
  64. h[4] = 0x9159015a; h[5] = 0x3070dd17;
  65. h[6] = 0x152fecd8; h[7] = 0xf70e5939;
  66. h[8] = 0x67332667; h[9] = 0xffc00b31;
  67. h[10] = 0x8eb44a87; h[11] = 0x68581511;
  68. h[12] = 0xdb0c2e0d; h[13] = 0x64f98fa7;
  69. h[14] = 0x47b5481d; h[15] = 0xbefa4fa4;
  70. #else
  71. c->h[0]=U64(0xcbbb9d5dc1059ed8);
  72. c->h[1]=U64(0x629a292a367cd507);
  73. c->h[2]=U64(0x9159015a3070dd17);
  74. c->h[3]=U64(0x152fecd8f70e5939);
  75. c->h[4]=U64(0x67332667ffc00b31);
  76. c->h[5]=U64(0x8eb44a8768581511);
  77. c->h[6]=U64(0xdb0c2e0d64f98fa7);
  78. c->h[7]=U64(0x47b5481dbefa4fa4);
  79. #endif
  80. c->Nl=0; c->Nh=0;
  81. c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
  82. return 1;
  83. }
  84. int SHA512_Init (SHA512_CTX *c)
  85. {
  86. #if defined(SHA512_ASM) && (defined(__arm__) || defined(__arm))
  87. /* maintain dword order required by assembler module */
  88. unsigned int *h = (unsigned int *)c->h;
  89. h[0] = 0x6a09e667; h[1] = 0xf3bcc908;
  90. h[2] = 0xbb67ae85; h[3] = 0x84caa73b;
  91. h[4] = 0x3c6ef372; h[5] = 0xfe94f82b;
  92. h[6] = 0xa54ff53a; h[7] = 0x5f1d36f1;
  93. h[8] = 0x510e527f; h[9] = 0xade682d1;
  94. h[10] = 0x9b05688c; h[11] = 0x2b3e6c1f;
  95. h[12] = 0x1f83d9ab; h[13] = 0xfb41bd6b;
  96. h[14] = 0x5be0cd19; h[15] = 0x137e2179;
  97. #else
  98. c->h[0]=U64(0x6a09e667f3bcc908);
  99. c->h[1]=U64(0xbb67ae8584caa73b);
  100. c->h[2]=U64(0x3c6ef372fe94f82b);
  101. c->h[3]=U64(0xa54ff53a5f1d36f1);
  102. c->h[4]=U64(0x510e527fade682d1);
  103. c->h[5]=U64(0x9b05688c2b3e6c1f);
  104. c->h[6]=U64(0x1f83d9abfb41bd6b);
  105. c->h[7]=U64(0x5be0cd19137e2179);
  106. #endif
  107. c->Nl=0; c->Nh=0;
  108. c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
  109. return 1;
  110. }
  111. #ifndef SHA512_ASM
  112. static
  113. #endif
  114. void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
  115. int SHA512_Final (unsigned char *md, SHA512_CTX *c)
  116. {
  117. unsigned char *p=(unsigned char *)c->u.p;
  118. size_t n=c->num;
  119. p[n]=0x80; /* There always is a room for one */
  120. n++;
  121. if (n > (sizeof(c->u)-16))
  122. memset (p+n,0,sizeof(c->u)-n), n=0,
  123. sha512_block_data_order (c,p,1);
  124. memset (p+n,0,sizeof(c->u)-16-n);
  125. #ifdef B_ENDIAN
  126. c->u.d[SHA_LBLOCK-2] = c->Nh;
  127. c->u.d[SHA_LBLOCK-1] = c->Nl;
  128. #else
  129. p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
  130. p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
  131. p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
  132. p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
  133. p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
  134. p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
  135. p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
  136. p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
  137. p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
  138. p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
  139. p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
  140. p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
  141. p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
  142. p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
  143. p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
  144. p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
  145. #endif
  146. sha512_block_data_order (c,p,1);
  147. if (md==0) return 0;
  148. #if defined(SHA512_ASM) && (defined(__arm__) || defined(__arm))
  149. /* recall assembler dword order... */
  150. n = c->md_len;
  151. if (n == SHA384_DIGEST_LENGTH || n == SHA512_DIGEST_LENGTH)
  152. {
  153. unsigned int *h = (unsigned int *)c->h, t;
  154. for (n/=4;n;n--)
  155. {
  156. t = *(h++);
  157. *(md++) = (unsigned char)(t>>24);
  158. *(md++) = (unsigned char)(t>>16);
  159. *(md++) = (unsigned char)(t>>8);
  160. *(md++) = (unsigned char)(t);
  161. }
  162. }
  163. else return 0;
  164. #else
  165. switch (c->md_len)
  166. {
  167. /* Let compiler decide if it's appropriate to unroll... */
  168. case SHA384_DIGEST_LENGTH:
  169. for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
  170. {
  171. SHA_LONG64 t = c->h[n];
  172. *(md++) = (unsigned char)(t>>56);
  173. *(md++) = (unsigned char)(t>>48);
  174. *(md++) = (unsigned char)(t>>40);
  175. *(md++) = (unsigned char)(t>>32);
  176. *(md++) = (unsigned char)(t>>24);
  177. *(md++) = (unsigned char)(t>>16);
  178. *(md++) = (unsigned char)(t>>8);
  179. *(md++) = (unsigned char)(t);
  180. }
  181. break;
  182. case SHA512_DIGEST_LENGTH:
  183. for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
  184. {
  185. SHA_LONG64 t = c->h[n];
  186. *(md++) = (unsigned char)(t>>56);
  187. *(md++) = (unsigned char)(t>>48);
  188. *(md++) = (unsigned char)(t>>40);
  189. *(md++) = (unsigned char)(t>>32);
  190. *(md++) = (unsigned char)(t>>24);
  191. *(md++) = (unsigned char)(t>>16);
  192. *(md++) = (unsigned char)(t>>8);
  193. *(md++) = (unsigned char)(t);
  194. }
  195. break;
  196. /* ... as well as make sure md_len is not abused. */
  197. default: return 0;
  198. }
  199. #endif
  200. return 1;
  201. }
  202. int SHA384_Final (unsigned char *md,SHA512_CTX *c)
  203. { return SHA512_Final (md,c); }
  204. int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
  205. {
  206. SHA_LONG64 l;
  207. unsigned char *p=c->u.p;
  208. const unsigned char *data=(const unsigned char *)_data;
  209. if (len==0) return 1;
  210. l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
  211. if (l < c->Nl) c->Nh++;
  212. if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
  213. c->Nl=l;
  214. if (c->num != 0)
  215. {
  216. size_t n = sizeof(c->u) - c->num;
  217. if (len < n)
  218. {
  219. memcpy (p+c->num,data,len), c->num += len;
  220. return 1;
  221. }
  222. else {
  223. memcpy (p+c->num,data,n), c->num = 0;
  224. len-=n, data+=n;
  225. sha512_block_data_order (c,p,1);
  226. }
  227. }
  228. if (len >= sizeof(c->u))
  229. {
  230. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  231. if ((size_t)data%sizeof(c->u.d[0]) != 0)
  232. while (len >= sizeof(c->u))
  233. memcpy (p,data,sizeof(c->u)),
  234. sha512_block_data_order (c,p,1),
  235. len -= sizeof(c->u),
  236. data += sizeof(c->u);
  237. else
  238. #endif
  239. sha512_block_data_order (c,data,len/sizeof(c->u)),
  240. data += len,
  241. len %= sizeof(c->u),
  242. data -= len;
  243. }
  244. if (len != 0) memcpy (p,data,len), c->num = (int)len;
  245. return 1;
  246. }
  247. int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
  248. { return SHA512_Update (c,data,len); }
  249. void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
  250. { sha512_block_data_order (c,data,1); }
  251. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  252. {
  253. SHA512_CTX c;
  254. static unsigned char m[SHA384_DIGEST_LENGTH];
  255. if (md == NULL) md=m;
  256. SHA384_Init(&c);
  257. SHA512_Update(&c,d,n);
  258. SHA512_Final(md,&c);
  259. OPENSSL_cleanse(&c,sizeof(c));
  260. return(md);
  261. }
  262. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  263. {
  264. SHA512_CTX c;
  265. static unsigned char m[SHA512_DIGEST_LENGTH];
  266. if (md == NULL) md=m;
  267. SHA512_Init(&c);
  268. SHA512_Update(&c,d,n);
  269. SHA512_Final(md,&c);
  270. OPENSSL_cleanse(&c,sizeof(c));
  271. return(md);
  272. }
  273. #ifndef SHA512_ASM
  274. static const SHA_LONG64 K512[80] = {
  275. U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
  276. U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
  277. U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
  278. U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
  279. U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
  280. U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
  281. U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
  282. U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
  283. U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
  284. U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
  285. U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
  286. U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
  287. U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
  288. U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
  289. U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
  290. U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
  291. U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
  292. U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
  293. U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
  294. U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
  295. U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
  296. U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
  297. U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
  298. U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
  299. U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
  300. U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
  301. U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
  302. U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
  303. U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
  304. U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
  305. U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
  306. U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
  307. U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
  308. U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
  309. U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
  310. U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
  311. U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
  312. U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
  313. U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
  314. U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
  315. #ifndef PEDANTIC
  316. # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  317. # if defined(__x86_64) || defined(__x86_64__)
  318. # define ROTR(a,n) ({ unsigned long ret; \
  319. asm ("rorq %1,%0" \
  320. : "=r"(ret) \
  321. : "J"(n),"0"(a) \
  322. : "cc"); ret; })
  323. # if !defined(B_ENDIAN)
  324. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  325. asm ("bswapq %0" \
  326. : "=r"(ret) \
  327. : "0"(ret)); ret; })
  328. # endif
  329. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  330. # if defined(I386_ONLY)
  331. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  332. unsigned int hi=p[0],lo=p[1]; \
  333. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  334. "roll $16,%%eax; roll $16,%%edx; "\
  335. "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
  336. : "=a"(lo),"=d"(hi) \
  337. : "0"(lo),"1"(hi) : "cc"); \
  338. ((SHA_LONG64)hi)<<32|lo; })
  339. # else
  340. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  341. unsigned int hi=p[0],lo=p[1]; \
  342. asm ("bswapl %0; bswapl %1;" \
  343. : "=r"(lo),"=r"(hi) \
  344. : "0"(lo),"1"(hi)); \
  345. ((SHA_LONG64)hi)<<32|lo; })
  346. # endif
  347. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  348. # define ROTR(a,n) ({ unsigned long ret; \
  349. asm ("rotrdi %0,%1,%2" \
  350. : "=r"(ret) \
  351. : "r"(a),"K"(n)); ret; })
  352. # endif
  353. # elif defined(_MSC_VER)
  354. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  355. # define ROTR(a,n) _rotr64((a),n)
  356. # endif
  357. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  358. # if defined(I386_ONLY)
  359. static SHA_LONG64 __fastcall __pull64be(const void *x)
  360. { _asm mov edx, [ecx + 0]
  361. _asm mov eax, [ecx + 4]
  362. _asm xchg dh,dl
  363. _asm xchg ah,al
  364. _asm rol edx,16
  365. _asm rol eax,16
  366. _asm xchg dh,dl
  367. _asm xchg ah,al
  368. }
  369. # else
  370. static SHA_LONG64 __fastcall __pull64be(const void *x)
  371. { _asm mov edx, [ecx + 0]
  372. _asm mov eax, [ecx + 4]
  373. _asm bswap edx
  374. _asm bswap eax
  375. }
  376. # endif
  377. # define PULL64(x) __pull64be(&(x))
  378. # if _MSC_VER<=1200
  379. # pragma inline_depth(0)
  380. # endif
  381. # endif
  382. # endif
  383. #endif
  384. #ifndef PULL64
  385. #define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  386. #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  387. #endif
  388. #ifndef ROTR
  389. #define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  390. #endif
  391. #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  392. #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  393. #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  394. #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  395. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  396. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  397. #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  398. /*
  399. * This code should give better results on 32-bit CPU with less than
  400. * ~24 registers, both size and performance wise...
  401. */
  402. static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
  403. {
  404. const SHA_LONG64 *W=in;
  405. SHA_LONG64 A,E,T;
  406. SHA_LONG64 X[9+80],*F;
  407. int i;
  408. while (num--) {
  409. F = X+80;
  410. A = ctx->h[0]; F[1] = ctx->h[1];
  411. F[2] = ctx->h[2]; F[3] = ctx->h[3];
  412. E = ctx->h[4]; F[5] = ctx->h[5];
  413. F[6] = ctx->h[6]; F[7] = ctx->h[7];
  414. for (i=0;i<16;i++,F--)
  415. {
  416. #ifdef B_ENDIAN
  417. T = W[i];
  418. #else
  419. T = PULL64(W[i]);
  420. #endif
  421. F[0] = A;
  422. F[4] = E;
  423. F[8] = T;
  424. T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
  425. E = F[3] + T;
  426. A = T + Sigma0(A) + Maj(A,F[1],F[2]);
  427. }
  428. for (;i<80;i++,F--)
  429. {
  430. T = sigma0(F[8+16-1]);
  431. T += sigma1(F[8+16-14]);
  432. T += F[8+16] + F[8+16-9];
  433. F[0] = A;
  434. F[4] = E;
  435. F[8] = T;
  436. T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
  437. E = F[3] + T;
  438. A = T + Sigma0(A) + Maj(A,F[1],F[2]);
  439. }
  440. ctx->h[0] += A; ctx->h[1] += F[1];
  441. ctx->h[2] += F[2]; ctx->h[3] += F[3];
  442. ctx->h[4] += E; ctx->h[5] += F[5];
  443. ctx->h[6] += F[6]; ctx->h[7] += F[7];
  444. W+=SHA_LBLOCK;
  445. }
  446. }
  447. #elif defined(OPENSSL_SMALL_FOOTPRINT)
  448. static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
  449. {
  450. const SHA_LONG64 *W=in;
  451. SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
  452. SHA_LONG64 X[16];
  453. int i;
  454. while (num--) {
  455. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  456. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  457. for (i=0;i<16;i++)
  458. {
  459. #ifdef B_ENDIAN
  460. T1 = X[i] = W[i];
  461. #else
  462. T1 = X[i] = PULL64(W[i]);
  463. #endif
  464. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  465. T2 = Sigma0(a) + Maj(a,b,c);
  466. h = g; g = f; f = e; e = d + T1;
  467. d = c; c = b; b = a; a = T1 + T2;
  468. }
  469. for (;i<80;i++)
  470. {
  471. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
  472. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
  473. T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
  474. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  475. T2 = Sigma0(a) + Maj(a,b,c);
  476. h = g; g = f; f = e; e = d + T1;
  477. d = c; c = b; b = a; a = T1 + T2;
  478. }
  479. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  480. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  481. W+=SHA_LBLOCK;
  482. }
  483. }
  484. #else
  485. #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  486. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  487. h = Sigma0(a) + Maj(a,b,c); \
  488. d += T1; h += T1; } while (0)
  489. #define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
  490. s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
  491. s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
  492. T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
  493. ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
  494. static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
  495. {
  496. const SHA_LONG64 *W=in;
  497. SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
  498. SHA_LONG64 X[16];
  499. int i;
  500. while (num--) {
  501. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  502. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  503. #ifdef B_ENDIAN
  504. T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
  505. T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
  506. T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
  507. T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
  508. T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
  509. T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
  510. T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
  511. T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
  512. T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
  513. T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
  514. T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
  515. T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
  516. T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
  517. T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
  518. T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
  519. T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
  520. #else
  521. T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
  522. T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
  523. T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
  524. T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
  525. T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
  526. T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
  527. T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
  528. T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
  529. T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
  530. T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
  531. T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
  532. T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
  533. T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
  534. T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
  535. T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
  536. T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
  537. #endif
  538. for (i=16;i<80;i+=16)
  539. {
  540. ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
  541. ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
  542. ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
  543. ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
  544. ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
  545. ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
  546. ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
  547. ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
  548. ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
  549. ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
  550. ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
  551. ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
  552. ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
  553. ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
  554. ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
  555. ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
  556. }
  557. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  558. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  559. W+=SHA_LBLOCK;
  560. }
  561. }
  562. #endif
  563. #endif /* SHA512_ASM */
  564. #endif /* OPENSSL_NO_SHA512 */