123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 |
- #! /usr/bin/env perl
- # Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the OpenSSL license (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- #
- # ====================================================================
- # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- #
- # April 2010
- #
- # The module implements "4-bit" GCM GHASH function and underlying
- # single multiplication operation in GF(2^128). "4-bit" means that it
- # uses 256 bytes per-key table [+32 bytes shared table]. There is no
- # experimental performance data available yet. The only approximation
- # that can be made at this point is based on code size. Inner loop is
- # 32 instructions long and on single-issue core should execute in <40
- # cycles. Having verified that gcc 3.4 didn't unroll corresponding
- # loop, this assembler loop body was found to be ~3x smaller than
- # compiler-generated one...
- #
- # July 2010
- #
- # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
- # Cortex A8 core and ~25 cycles per processed byte (which was observed
- # to be ~3 times faster than gcc-generated code:-)
- #
- # February 2011
- #
- # Profiler-assisted and platform-specific optimization resulted in 7%
- # improvement on Cortex A8 core and ~23.5 cycles per byte.
- #
- # March 2011
- #
- # Add NEON implementation featuring polynomial multiplication, i.e. no
- # lookup tables involved. On Cortex A8 it was measured to process one
- # byte in 15 cycles or 55% faster than integer-only code.
- #
- # April 2014
- #
- # Switch to multiplication algorithm suggested in paper referred
- # below and combine it with reduction algorithm from x86 module.
- # Performance improvement over previous version varies from 65% on
- # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
- # processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63,
- # Snapdragon S4 - in 9.33.
- #
- # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
- # Polynomial Multiplication on ARM Processors using the NEON Engine.
- #
- # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
- # ====================================================================
- # Note about "528B" variant. In ARM case it makes lesser sense to
- # implement it for following reasons:
- #
- # - performance improvement won't be anywhere near 50%, because 128-
- # bit shift operation is neatly fused with 128-bit xor here, and
- # "538B" variant would eliminate only 4-5 instructions out of 32
- # in the inner loop (meaning that estimated improvement is ~15%);
- # - ARM-based systems are often embedded ones and extra memory
- # consumption might be unappreciated (for so little improvement);
- #
- # Byte order [in]dependence. =========================================
- #
- # Caller is expected to maintain specific *dword* order in Htable,
- # namely with *least* significant dword of 128-bit value at *lower*
- # address. This differs completely from C code and has everything to
- # do with ldm instruction and order in which dwords are "consumed" by
- # algorithm. *Byte* order within these dwords in turn is whatever
- # *native* byte order on current platform. See gcm128.c for working
- # example...
- $flavour = shift;
- if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
- else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
- if ($flavour && $flavour ne "void") {
- $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
- ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
- ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
- die "can't locate arm-xlate.pl";
- open STDOUT,"| \"$^X\" $xlate $flavour $output";
- } else {
- open STDOUT,">$output";
- }
- $Xi="r0"; # argument block
- $Htbl="r1";
- $inp="r2";
- $len="r3";
- $Zll="r4"; # variables
- $Zlh="r5";
- $Zhl="r6";
- $Zhh="r7";
- $Tll="r8";
- $Tlh="r9";
- $Thl="r10";
- $Thh="r11";
- $nlo="r12";
- ################# r13 is stack pointer
- $nhi="r14";
- ################# r15 is program counter
- $rem_4bit=$inp; # used in gcm_gmult_4bit
- $cnt=$len;
- sub Zsmash() {
- my $i=12;
- my @args=@_;
- for ($Zll,$Zlh,$Zhl,$Zhh) {
- $code.=<<___;
- #if __ARM_ARCH__>=7 && defined(__ARMEL__)
- rev $_,$_
- str $_,[$Xi,#$i]
- #elif defined(__ARMEB__)
- str $_,[$Xi,#$i]
- #else
- mov $Tlh,$_,lsr#8
- strb $_,[$Xi,#$i+3]
- mov $Thl,$_,lsr#16
- strb $Tlh,[$Xi,#$i+2]
- mov $Thh,$_,lsr#24
- strb $Thl,[$Xi,#$i+1]
- strb $Thh,[$Xi,#$i]
- #endif
- ___
- $code.="\t".shift(@args)."\n";
- $i-=4;
- }
- }
- $code=<<___;
- #include "arm_arch.h"
- .text
- #if defined(__thumb2__) || defined(__clang__)
- .syntax unified
- #define ldrplb ldrbpl
- #define ldrneb ldrbne
- #endif
- #if defined(__thumb2__)
- .thumb
- #else
- .code 32
- #endif
- .type rem_4bit,%object
- .align 5
- rem_4bit:
- .short 0x0000,0x1C20,0x3840,0x2460
- .short 0x7080,0x6CA0,0x48C0,0x54E0
- .short 0xE100,0xFD20,0xD940,0xC560
- .short 0x9180,0x8DA0,0xA9C0,0xB5E0
- .size rem_4bit,.-rem_4bit
- .type rem_4bit_get,%function
- rem_4bit_get:
- #if defined(__thumb2__)
- adr $rem_4bit,rem_4bit
- #else
- sub $rem_4bit,pc,#8+32 @ &rem_4bit
- #endif
- b .Lrem_4bit_got
- nop
- nop
- .size rem_4bit_get,.-rem_4bit_get
- .global gcm_ghash_4bit
- .type gcm_ghash_4bit,%function
- .align 4
- gcm_ghash_4bit:
- #if defined(__thumb2__)
- adr r12,rem_4bit
- #else
- sub r12,pc,#8+48 @ &rem_4bit
- #endif
- add $len,$inp,$len @ $len to point at the end
- stmdb sp!,{r3-r11,lr} @ save $len/end too
- ldmia r12,{r4-r11} @ copy rem_4bit ...
- stmdb sp!,{r4-r11} @ ... to stack
- ldrb $nlo,[$inp,#15]
- ldrb $nhi,[$Xi,#15]
- .Louter:
- eor $nlo,$nlo,$nhi
- and $nhi,$nlo,#0xf0
- and $nlo,$nlo,#0x0f
- mov $cnt,#14
- add $Zhh,$Htbl,$nlo,lsl#4
- ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
- add $Thh,$Htbl,$nhi
- ldrb $nlo,[$inp,#14]
- and $nhi,$Zll,#0xf @ rem
- ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
- add $nhi,$nhi,$nhi
- eor $Zll,$Tll,$Zll,lsr#4
- ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
- eor $Zll,$Zll,$Zlh,lsl#28
- ldrb $nhi,[$Xi,#14]
- eor $Zlh,$Tlh,$Zlh,lsr#4
- eor $Zlh,$Zlh,$Zhl,lsl#28
- eor $Zhl,$Thl,$Zhl,lsr#4
- eor $Zhl,$Zhl,$Zhh,lsl#28
- eor $Zhh,$Thh,$Zhh,lsr#4
- eor $nlo,$nlo,$nhi
- and $nhi,$nlo,#0xf0
- and $nlo,$nlo,#0x0f
- eor $Zhh,$Zhh,$Tll,lsl#16
- .Linner:
- add $Thh,$Htbl,$nlo,lsl#4
- and $nlo,$Zll,#0xf @ rem
- subs $cnt,$cnt,#1
- add $nlo,$nlo,$nlo
- ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
- eor $Zll,$Tll,$Zll,lsr#4
- eor $Zll,$Zll,$Zlh,lsl#28
- eor $Zlh,$Tlh,$Zlh,lsr#4
- eor $Zlh,$Zlh,$Zhl,lsl#28
- ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
- eor $Zhl,$Thl,$Zhl,lsr#4
- #ifdef __thumb2__
- it pl
- #endif
- ldrplb $nlo,[$inp,$cnt]
- eor $Zhl,$Zhl,$Zhh,lsl#28
- eor $Zhh,$Thh,$Zhh,lsr#4
- add $Thh,$Htbl,$nhi
- and $nhi,$Zll,#0xf @ rem
- eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
- add $nhi,$nhi,$nhi
- ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
- eor $Zll,$Tll,$Zll,lsr#4
- #ifdef __thumb2__
- it pl
- #endif
- ldrplb $Tll,[$Xi,$cnt]
- eor $Zll,$Zll,$Zlh,lsl#28
- eor $Zlh,$Tlh,$Zlh,lsr#4
- ldrh $Tlh,[sp,$nhi]
- eor $Zlh,$Zlh,$Zhl,lsl#28
- eor $Zhl,$Thl,$Zhl,lsr#4
- eor $Zhl,$Zhl,$Zhh,lsl#28
- #ifdef __thumb2__
- it pl
- #endif
- eorpl $nlo,$nlo,$Tll
- eor $Zhh,$Thh,$Zhh,lsr#4
- #ifdef __thumb2__
- itt pl
- #endif
- andpl $nhi,$nlo,#0xf0
- andpl $nlo,$nlo,#0x0f
- eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
- bpl .Linner
- ldr $len,[sp,#32] @ re-load $len/end
- add $inp,$inp,#16
- mov $nhi,$Zll
- ___
- &Zsmash("cmp\t$inp,$len","\n".
- "#ifdef __thumb2__\n".
- " it ne\n".
- "#endif\n".
- " ldrneb $nlo,[$inp,#15]");
- $code.=<<___;
- bne .Louter
- add sp,sp,#36
- #if __ARM_ARCH__>=5
- ldmia sp!,{r4-r11,pc}
- #else
- ldmia sp!,{r4-r11,lr}
- tst lr,#1
- moveq pc,lr @ be binary compatible with V4, yet
- bx lr @ interoperable with Thumb ISA:-)
- #endif
- .size gcm_ghash_4bit,.-gcm_ghash_4bit
- .global gcm_gmult_4bit
- .type gcm_gmult_4bit,%function
- gcm_gmult_4bit:
- stmdb sp!,{r4-r11,lr}
- ldrb $nlo,[$Xi,#15]
- b rem_4bit_get
- .Lrem_4bit_got:
- and $nhi,$nlo,#0xf0
- and $nlo,$nlo,#0x0f
- mov $cnt,#14
- add $Zhh,$Htbl,$nlo,lsl#4
- ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
- ldrb $nlo,[$Xi,#14]
- add $Thh,$Htbl,$nhi
- and $nhi,$Zll,#0xf @ rem
- ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
- add $nhi,$nhi,$nhi
- eor $Zll,$Tll,$Zll,lsr#4
- ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
- eor $Zll,$Zll,$Zlh,lsl#28
- eor $Zlh,$Tlh,$Zlh,lsr#4
- eor $Zlh,$Zlh,$Zhl,lsl#28
- eor $Zhl,$Thl,$Zhl,lsr#4
- eor $Zhl,$Zhl,$Zhh,lsl#28
- eor $Zhh,$Thh,$Zhh,lsr#4
- and $nhi,$nlo,#0xf0
- eor $Zhh,$Zhh,$Tll,lsl#16
- and $nlo,$nlo,#0x0f
- .Loop:
- add $Thh,$Htbl,$nlo,lsl#4
- and $nlo,$Zll,#0xf @ rem
- subs $cnt,$cnt,#1
- add $nlo,$nlo,$nlo
- ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
- eor $Zll,$Tll,$Zll,lsr#4
- eor $Zll,$Zll,$Zlh,lsl#28
- eor $Zlh,$Tlh,$Zlh,lsr#4
- eor $Zlh,$Zlh,$Zhl,lsl#28
- ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
- eor $Zhl,$Thl,$Zhl,lsr#4
- #ifdef __thumb2__
- it pl
- #endif
- ldrplb $nlo,[$Xi,$cnt]
- eor $Zhl,$Zhl,$Zhh,lsl#28
- eor $Zhh,$Thh,$Zhh,lsr#4
- add $Thh,$Htbl,$nhi
- and $nhi,$Zll,#0xf @ rem
- eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
- add $nhi,$nhi,$nhi
- ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
- eor $Zll,$Tll,$Zll,lsr#4
- eor $Zll,$Zll,$Zlh,lsl#28
- eor $Zlh,$Tlh,$Zlh,lsr#4
- ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
- eor $Zlh,$Zlh,$Zhl,lsl#28
- eor $Zhl,$Thl,$Zhl,lsr#4
- eor $Zhl,$Zhl,$Zhh,lsl#28
- eor $Zhh,$Thh,$Zhh,lsr#4
- #ifdef __thumb2__
- itt pl
- #endif
- andpl $nhi,$nlo,#0xf0
- andpl $nlo,$nlo,#0x0f
- eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
- bpl .Loop
- ___
- &Zsmash();
- $code.=<<___;
- #if __ARM_ARCH__>=5
- ldmia sp!,{r4-r11,pc}
- #else
- ldmia sp!,{r4-r11,lr}
- tst lr,#1
- moveq pc,lr @ be binary compatible with V4, yet
- bx lr @ interoperable with Thumb ISA:-)
- #endif
- .size gcm_gmult_4bit,.-gcm_gmult_4bit
- ___
- {
- my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
- my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
- my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
- sub clmul64x64 {
- my ($r,$a,$b)=@_;
- $code.=<<___;
- vext.8 $t0#lo, $a, $a, #1 @ A1
- vmull.p8 $t0, $t0#lo, $b @ F = A1*B
- vext.8 $r#lo, $b, $b, #1 @ B1
- vmull.p8 $r, $a, $r#lo @ E = A*B1
- vext.8 $t1#lo, $a, $a, #2 @ A2
- vmull.p8 $t1, $t1#lo, $b @ H = A2*B
- vext.8 $t3#lo, $b, $b, #2 @ B2
- vmull.p8 $t3, $a, $t3#lo @ G = A*B2
- vext.8 $t2#lo, $a, $a, #3 @ A3
- veor $t0, $t0, $r @ L = E + F
- vmull.p8 $t2, $t2#lo, $b @ J = A3*B
- vext.8 $r#lo, $b, $b, #3 @ B3
- veor $t1, $t1, $t3 @ M = G + H
- vmull.p8 $r, $a, $r#lo @ I = A*B3
- veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8
- vand $t0#hi, $t0#hi, $k48
- vext.8 $t3#lo, $b, $b, #4 @ B4
- veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16
- vand $t1#hi, $t1#hi, $k32
- vmull.p8 $t3, $a, $t3#lo @ K = A*B4
- veor $t2, $t2, $r @ N = I + J
- veor $t0#lo, $t0#lo, $t0#hi
- veor $t1#lo, $t1#lo, $t1#hi
- veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24
- vand $t2#hi, $t2#hi, $k16
- vext.8 $t0, $t0, $t0, #15
- veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32
- vmov.i64 $t3#hi, #0
- vext.8 $t1, $t1, $t1, #14
- veor $t2#lo, $t2#lo, $t2#hi
- vmull.p8 $r, $a, $b @ D = A*B
- vext.8 $t3, $t3, $t3, #12
- vext.8 $t2, $t2, $t2, #13
- veor $t0, $t0, $t1
- veor $t2, $t2, $t3
- veor $r, $r, $t0
- veor $r, $r, $t2
- ___
- }
- $code.=<<___;
- #if __ARM_MAX_ARCH__>=7
- .arch armv7-a
- .fpu neon
- .global gcm_init_neon
- .type gcm_init_neon,%function
- .align 4
- gcm_init_neon:
- vld1.64 $IN#hi,[r1]! @ load H
- vmov.i8 $t0,#0xe1
- vld1.64 $IN#lo,[r1]
- vshl.i64 $t0#hi,#57
- vshr.u64 $t0#lo,#63 @ t0=0xc2....01
- vdup.8 $t1,$IN#hi[7]
- vshr.u64 $Hlo,$IN#lo,#63
- vshr.s8 $t1,#7 @ broadcast carry bit
- vshl.i64 $IN,$IN,#1
- vand $t0,$t0,$t1
- vorr $IN#hi,$Hlo @ H<<<=1
- veor $IN,$IN,$t0 @ twisted H
- vstmia r0,{$IN}
- ret @ bx lr
- .size gcm_init_neon,.-gcm_init_neon
- .global gcm_gmult_neon
- .type gcm_gmult_neon,%function
- .align 4
- gcm_gmult_neon:
- vld1.64 $IN#hi,[$Xi]! @ load Xi
- vld1.64 $IN#lo,[$Xi]!
- vmov.i64 $k48,#0x0000ffffffffffff
- vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
- vmov.i64 $k32,#0x00000000ffffffff
- #ifdef __ARMEL__
- vrev64.8 $IN,$IN
- #endif
- vmov.i64 $k16,#0x000000000000ffff
- veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
- mov $len,#16
- b .Lgmult_neon
- .size gcm_gmult_neon,.-gcm_gmult_neon
- .global gcm_ghash_neon
- .type gcm_ghash_neon,%function
- .align 4
- gcm_ghash_neon:
- vld1.64 $Xl#hi,[$Xi]! @ load Xi
- vld1.64 $Xl#lo,[$Xi]!
- vmov.i64 $k48,#0x0000ffffffffffff
- vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
- vmov.i64 $k32,#0x00000000ffffffff
- #ifdef __ARMEL__
- vrev64.8 $Xl,$Xl
- #endif
- vmov.i64 $k16,#0x000000000000ffff
- veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
- .Loop_neon:
- vld1.64 $IN#hi,[$inp]! @ load inp
- vld1.64 $IN#lo,[$inp]!
- #ifdef __ARMEL__
- vrev64.8 $IN,$IN
- #endif
- veor $IN,$Xl @ inp^=Xi
- .Lgmult_neon:
- ___
- &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo
- $code.=<<___;
- veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing
- ___
- &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi)
- &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi
- $code.=<<___;
- veor $Xm,$Xm,$Xl @ Karatsuba post-processing
- veor $Xm,$Xm,$Xh
- veor $Xl#hi,$Xl#hi,$Xm#lo
- veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result
- @ equivalent of reduction_avx from ghash-x86_64.pl
- vshl.i64 $t1,$Xl,#57 @ 1st phase
- vshl.i64 $t2,$Xl,#62
- veor $t2,$t2,$t1 @
- vshl.i64 $t1,$Xl,#63
- veor $t2, $t2, $t1 @
- veor $Xl#hi,$Xl#hi,$t2#lo @
- veor $Xh#lo,$Xh#lo,$t2#hi
- vshr.u64 $t2,$Xl,#1 @ 2nd phase
- veor $Xh,$Xh,$Xl
- veor $Xl,$Xl,$t2 @
- vshr.u64 $t2,$t2,#6
- vshr.u64 $Xl,$Xl,#1 @
- veor $Xl,$Xl,$Xh @
- veor $Xl,$Xl,$t2 @
- subs $len,#16
- bne .Loop_neon
- #ifdef __ARMEL__
- vrev64.8 $Xl,$Xl
- #endif
- sub $Xi,#16
- vst1.64 $Xl#hi,[$Xi]! @ write out Xi
- vst1.64 $Xl#lo,[$Xi]
- ret @ bx lr
- .size gcm_ghash_neon,.-gcm_ghash_neon
- #endif
- ___
- }
- $code.=<<___;
- .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
- .align 2
- ___
- foreach (split("\n",$code)) {
- s/\`([^\`]*)\`/eval $1/geo;
- s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
- s/\bret\b/bx lr/go or
- s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
- print $_,"\n";
- }
- close STDOUT; # enforce flush
|