123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608 |
- #! /usr/bin/env perl
- # Copyright 2009-2016 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the OpenSSL license (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- # ====================================================================
- # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- # January 2009
- #
- # Provided that UltraSPARC VIS instructions are pipe-lined(*) and
- # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
- # Graphic Unit would make it possible to achieve higher instruction-
- # level parallelism, ILP, and thus higher performance. It should be
- # explicitly noted that ILP is the keyword, and it means that this
- # code would be unsuitable for cores like UltraSPARC-Tx. The idea is
- # not really novel, Sun had VIS-powered implementation for a while.
- # Unlike Sun's implementation this one can process multiple unaligned
- # input blocks, and as such works as drop-in replacement for OpenSSL
- # sha1_block_data_order. Performance improvement was measured to be
- # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
- # UltraSPARC-III. See below for discussion...
- #
- # The module does not present direct interest for OpenSSL, because
- # it doesn't provide better performance on contemporary SPARCv9 CPUs,
- # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
- # absolutely must score on UltraSPARC-I-IV can simply replace
- # crypto/sha/asm/sha1-sparcv9.pl with this module.
- #
- # (*) "Pipe-lined" means that even if it takes several cycles to
- # complete, next instruction using same functional unit [but not
- # depending on the result of the current instruction] can start
- # execution without having to wait for the unit. "Pairable"
- # means that two [or more] independent instructions can be
- # issued at the very same time.
- $bits=32;
- for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
- if ($bits==64) { $bias=2047; $frame=192; }
- else { $bias=0; $frame=112; }
- $output=shift;
- open STDOUT,">$output";
- $ctx="%i0";
- $inp="%i1";
- $len="%i2";
- $tmp0="%i3";
- $tmp1="%i4";
- $tmp2="%i5";
- $tmp3="%g5";
- $base="%g1";
- $align="%g4";
- $Xfer="%o5";
- $nXfer=$tmp3;
- $Xi="%o7";
- $A="%l0";
- $B="%l1";
- $C="%l2";
- $D="%l3";
- $E="%l4";
- @V=($A,$B,$C,$D,$E);
- $Actx="%o0";
- $Bctx="%o1";
- $Cctx="%o2";
- $Dctx="%o3";
- $Ectx="%o4";
- $fmul="%f32";
- $VK_00_19="%f34";
- $VK_20_39="%f36";
- $VK_40_59="%f38";
- $VK_60_79="%f40";
- @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
- @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
- "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
- # This is reference 2x-parallelized VIS-powered Xupdate procedure. It
- # covers even K_NN_MM addition...
- sub Xupdate {
- my ($i)=@_;
- my $K=@VK[($i+16)/20];
- my $j=($i+16)%16;
- # [ provided that GSR.alignaddr_offset is 5, $mul contains
- # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
- # chosen registers... ]
- $code.=<<___;
- fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13]
- fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
- fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
- fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
- faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
- fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
- fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
- ![fxors %f15,%f2,%f2]
- for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
- ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency
- fpadd32 $K,@X[$j],%f20
- std %f20,[$Xfer+`4*$j`]
- ___
- # The numbers delimited with slash are the earliest possible dispatch
- # cycles for given instruction assuming 1 cycle latency for simple VIS
- # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
- # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
- # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
- # round. As [long as] FPU/VIS instructions are perfectly pairable with
- # IALU ones, the round timing is defined by the maximum between VIS
- # and IALU timings. The latter varies from round to round and averages
- # out at 6.25 ticks. This means that USI&II should operate at IALU
- # rate, while USIII&IV - at VIS rate. This explains why performance
- # improvement varies among processors. Well, given that pure IALU
- # sha1-sparcv9.pl module exhibits virtually uniform performance of
- # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
- # lower limits. Real-life performance was measured to be 6.6 cycles
- # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
- # half-round VIS timing, because there are 16 Xupdate-free rounds,
- # which "push down" average theoretical timing to 8 cycles...
- # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS
- # latency. Well, it might have, but it doesn't have dedicated
- # VIS-unit. Instead, VIS instructions are executed by other
- # functional units, ones used here - by IALU. This doesn't
- # improve effective ILP...
- }
- # The reference Xupdate procedure is then "strained" over *pairs* of
- # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
- # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
- # plenty of room to amortize for read-after-write hazard, as well as
- # to fetch and align input for the next spin. The VIS instructions are
- # scheduled for latency of 2 cycles, because there are not enough IALU
- # instructions to schedule for latency of 3, while scheduling for 1
- # would give no gain on USI&II anyway.
- sub BODY_00_19 {
- my ($i,$a,$b,$c,$d,$e)=@_;
- my $j=$i&~1;
- my $k=($j+16+2)%16; # ahead reference
- my $l=($j+16-2)%16; # behind reference
- my $K=@VK[($j+16-2)/20];
- $j=($j+16)%16;
- $code.=<<___ if (!($i&1));
- sll $a,5,$tmp0 !! $i
- and $c,$b,$tmp3
- ld [$Xfer+`4*($i%16)`],$Xi
- fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
- sll $b,30,$tmp2
- add $tmp1,$e,$e
- andn $d,$b,$tmp1
- add $Xi,$e,$e
- fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
- srl $b,2,$b
- or $tmp1,$tmp3,$tmp1
- or $tmp2,$b,$b
- add $tmp1,$e,$e
- faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
- ___
- $code.=<<___ if ($i&1);
- sll $a,5,$tmp0 !! $i
- and $c,$b,$tmp3
- ld [$Xfer+`4*($i%16)`],$Xi
- fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
- sll $b,30,$tmp2
- add $tmp1,$e,$e
- fpadd32 $K,@X[$l],%f20 !
- andn $d,$b,$tmp1
- add $Xi,$e,$e
- fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
- srl $b,2,$b
- or $tmp1,$tmp3,$tmp1
- fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
- or $tmp2,$b,$b
- add $tmp1,$e,$e
- ___
- $code.=<<___ if ($i&1 && $i>=2);
- std %f20,[$Xfer+`4*$l`] !
- ___
- }
- sub BODY_20_39 {
- my ($i,$a,$b,$c,$d,$e)=@_;
- my $j=$i&~1;
- my $k=($j+16+2)%16; # ahead reference
- my $l=($j+16-2)%16; # behind reference
- my $K=@VK[($j+16-2)/20];
- $j=($j+16)%16;
- $code.=<<___ if (!($i&1) && $i<64);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
- srl $b,2,$b
- add $tmp1,$e,$e
- or $tmp2,$b,$b
- add $Xi,$e,$e
- faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
- ___
- $code.=<<___ if ($i&1 && $i<64);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- fpadd32 $K,@X[$l],%f20 !
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
- srl $b,2,$b
- add $tmp1,$e,$e
- fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
- or $tmp2,$b,$b
- add $Xi,$e,$e
- std %f20,[$Xfer+`4*$l`] !
- ___
- $code.=<<___ if ($i==64);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- fpadd32 $K,@X[$l],%f20
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- std %f20,[$Xfer+`4*$l`]
- srl $b,2,$b
- add $tmp1,$e,$e
- or $tmp2,$b,$b
- add $Xi,$e,$e
- ___
- $code.=<<___ if ($i>64);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- srl $b,2,$b
- add $tmp1,$e,$e
- or $tmp2,$b,$b
- add $Xi,$e,$e
- ___
- }
- sub BODY_40_59 {
- my ($i,$a,$b,$c,$d,$e)=@_;
- my $j=$i&~1;
- my $k=($j+16+2)%16; # ahead reference
- my $l=($j+16-2)%16; # behind reference
- my $K=@VK[($j+16-2)/20];
- $j=($j+16)%16;
- $code.=<<___ if (!($i&1));
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
- and $c,$b,$tmp0
- add $tmp1,$e,$e
- sll $b,30,$tmp2
- or $c,$b,$tmp1
- fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
- srl $b,2,$b
- and $d,$tmp1,$tmp1
- add $Xi,$e,$e
- or $tmp1,$tmp0,$tmp1
- faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
- or $tmp2,$b,$b
- add $tmp1,$e,$e
- fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
- ___
- $code.=<<___ if ($i&1);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
- and $c,$b,$tmp0
- add $tmp1,$e,$e
- fpadd32 $K,@X[$l],%f20 !
- sll $b,30,$tmp2
- or $c,$b,$tmp1
- fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
- srl $b,2,$b
- and $d,$tmp1,$tmp1
- fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
- add $Xi,$e,$e
- or $tmp1,$tmp0,$tmp1
- or $tmp2,$b,$b
- add $tmp1,$e,$e
- std %f20,[$Xfer+`4*$l`] !
- ___
- }
- # If there is more data to process, then we pre-fetch the data for
- # next iteration in last ten rounds...
- sub BODY_70_79 {
- my ($i,$a,$b,$c,$d,$e)=@_;
- my $j=$i&~1;
- my $m=($i%8)*2;
- $j=($j+16)%16;
- $code.=<<___ if ($i==70);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- ldd [$inp+64],@X[0]
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- srl $b,2,$b
- add $tmp1,$e,$e
- or $tmp2,$b,$b
- add $Xi,$e,$e
- and $inp,-64,$nXfer
- inc 64,$inp
- and $nXfer,255,$nXfer
- alignaddr %g0,$align,%g0
- add $base,$nXfer,$nXfer
- ___
- $code.=<<___ if ($i==71);
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- srl $b,2,$b
- add $tmp1,$e,$e
- or $tmp2,$b,$b
- add $Xi,$e,$e
- ___
- $code.=<<___ if ($i>=72);
- faligndata @X[$m],@X[$m+2],@X[$m]
- sll $a,5,$tmp0 !! $i
- ld [$Xfer+`4*($i%16)`],$Xi
- srl $a,27,$tmp1
- add $tmp0,$e,$e
- xor $c,$b,$tmp0
- add $tmp1,$e,$e
- fpadd32 $VK_00_19,@X[$m],%f20
- sll $b,30,$tmp2
- xor $d,$tmp0,$tmp1
- srl $b,2,$b
- add $tmp1,$e,$e
- or $tmp2,$b,$b
- add $Xi,$e,$e
- ___
- $code.=<<___ if ($i<77);
- ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
- ___
- $code.=<<___ if ($i==77); # redundant if $inp was aligned
- add $align,63,$tmp0
- and $tmp0,-8,$tmp0
- ldd [$inp+$tmp0],@X[16]
- ___
- $code.=<<___ if ($i>=72);
- std %f20,[$nXfer+`4*$m`]
- ___
- }
- $code.=<<___;
- .section ".text",#alloc,#execinstr
- .align 64
- vis_const:
- .long 0x5a827999,0x5a827999 ! K_00_19
- .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39
- .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59
- .long 0xca62c1d6,0xca62c1d6 ! K_60_79
- .long 0x00000100,0x00000100
- .align 64
- .type vis_const,#object
- .size vis_const,(.-vis_const)
- .globl sha1_block_data_order
- sha1_block_data_order:
- save %sp,-$frame,%sp
- add %fp,$bias-256,$base
- 1: call .+8
- add %o7,vis_const-1b,$tmp0
- ldd [$tmp0+0],$VK_00_19
- ldd [$tmp0+8],$VK_20_39
- ldd [$tmp0+16],$VK_40_59
- ldd [$tmp0+24],$VK_60_79
- ldd [$tmp0+32],$fmul
- ld [$ctx+0],$Actx
- and $base,-256,$base
- ld [$ctx+4],$Bctx
- sub $base,$bias+$frame,%sp
- ld [$ctx+8],$Cctx
- and $inp,7,$align
- ld [$ctx+12],$Dctx
- and $inp,-8,$inp
- ld [$ctx+16],$Ectx
- ! X[16] is maintained in FP register bank
- alignaddr %g0,$align,%g0
- ldd [$inp+0],@X[0]
- sub $inp,-64,$Xfer
- ldd [$inp+8],@X[2]
- and $Xfer,-64,$Xfer
- ldd [$inp+16],@X[4]
- and $Xfer,255,$Xfer
- ldd [$inp+24],@X[6]
- add $base,$Xfer,$Xfer
- ldd [$inp+32],@X[8]
- ldd [$inp+40],@X[10]
- ldd [$inp+48],@X[12]
- brz,pt $align,.Laligned
- ldd [$inp+56],@X[14]
- ldd [$inp+64],@X[16]
- faligndata @X[0],@X[2],@X[0]
- faligndata @X[2],@X[4],@X[2]
- faligndata @X[4],@X[6],@X[4]
- faligndata @X[6],@X[8],@X[6]
- faligndata @X[8],@X[10],@X[8]
- faligndata @X[10],@X[12],@X[10]
- faligndata @X[12],@X[14],@X[12]
- faligndata @X[14],@X[16],@X[14]
- .Laligned:
- mov 5,$tmp0
- dec 1,$len
- alignaddr %g0,$tmp0,%g0
- fpadd32 $VK_00_19,@X[0],%f16
- fpadd32 $VK_00_19,@X[2],%f18
- fpadd32 $VK_00_19,@X[4],%f20
- fpadd32 $VK_00_19,@X[6],%f22
- fpadd32 $VK_00_19,@X[8],%f24
- fpadd32 $VK_00_19,@X[10],%f26
- fpadd32 $VK_00_19,@X[12],%f28
- fpadd32 $VK_00_19,@X[14],%f30
- std %f16,[$Xfer+0]
- mov $Actx,$A
- std %f18,[$Xfer+8]
- mov $Bctx,$B
- std %f20,[$Xfer+16]
- mov $Cctx,$C
- std %f22,[$Xfer+24]
- mov $Dctx,$D
- std %f24,[$Xfer+32]
- mov $Ectx,$E
- std %f26,[$Xfer+40]
- fxors @X[13],@X[0],@X[0]
- std %f28,[$Xfer+48]
- ba .Loop
- std %f30,[$Xfer+56]
- .align 32
- .Loop:
- ___
- for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
- for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
- for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
- for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
- $code.=<<___;
- tst $len
- bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail
- nop
- ___
- for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
- $code.=<<___;
- add $A,$Actx,$Actx
- add $B,$Bctx,$Bctx
- add $C,$Cctx,$Cctx
- add $D,$Dctx,$Dctx
- add $E,$Ectx,$Ectx
- mov 5,$tmp0
- fxors @X[13],@X[0],@X[0]
- mov $Actx,$A
- mov $Bctx,$B
- mov $Cctx,$C
- mov $Dctx,$D
- mov $Ectx,$E
- alignaddr %g0,$tmp0,%g0
- dec 1,$len
- ba .Loop
- mov $nXfer,$Xfer
- .align 32
- .Ltail:
- ___
- for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
- $code.=<<___;
- add $A,$Actx,$Actx
- add $B,$Bctx,$Bctx
- add $C,$Cctx,$Cctx
- add $D,$Dctx,$Dctx
- add $E,$Ectx,$Ectx
- st $Actx,[$ctx+0]
- st $Bctx,[$ctx+4]
- st $Cctx,[$ctx+8]
- st $Dctx,[$ctx+12]
- st $Ectx,[$ctx+16]
- ret
- restore
- .type sha1_block_data_order,#function
- .size sha1_block_data_order,(.-sha1_block_data_order)
- .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
- .align 4
- ___
- # Purpose of these subroutines is to explicitly encode VIS instructions,
- # so that one can compile the module without having to specify VIS
- # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
- # Idea is to reserve for option to produce "universal" binary and let
- # programmer detect if current CPU is VIS capable at run-time.
- sub unvis {
- my ($mnemonic,$rs1,$rs2,$rd)=@_;
- my ($ref,$opf);
- my %visopf = ( "fmul8ulx16" => 0x037,
- "faligndata" => 0x048,
- "fpadd32" => 0x052,
- "fxor" => 0x06c,
- "fxors" => 0x06d );
- $ref = "$mnemonic\t$rs1,$rs2,$rd";
- if ($opf=$visopf{$mnemonic}) {
- foreach ($rs1,$rs2,$rd) {
- return $ref if (!/%f([0-9]{1,2})/);
- $_=$1;
- if ($1>=32) {
- return $ref if ($1&1);
- # re-encode for upper double register addressing
- $_=($1|$1>>5)&31;
- }
- }
- return sprintf ".word\t0x%08x !%s",
- 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
- $ref;
- } else {
- return $ref;
- }
- }
- sub unalignaddr {
- my ($mnemonic,$rs1,$rs2,$rd)=@_;
- my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
- my $ref="$mnemonic\t$rs1,$rs2,$rd";
- foreach ($rs1,$rs2,$rd) {
- if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
- else { return $ref; }
- }
- return sprintf ".word\t0x%08x !%s",
- 0x81b00300|$rd<<25|$rs1<<14|$rs2,
- $ref;
- }
- $code =~ s/\`([^\`]*)\`/eval $1/gem;
- $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
- &unvis($1,$2,$3,$4)
- /gem;
- $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
- &unalignaddr($1,$2,$3,$4)
- /gem;
- print $code;
- close STDOUT;
|