sha_locl.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. /*
  2. * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #include <openssl/opensslconf.h>
  12. #include <openssl/sha.h>
  13. #define DATA_ORDER_IS_BIG_ENDIAN
  14. #define HASH_LONG SHA_LONG
  15. #define HASH_CTX SHA_CTX
  16. #define HASH_CBLOCK SHA_CBLOCK
  17. #define HASH_MAKE_STRING(c,s) do { \
  18. unsigned long ll; \
  19. ll=(c)->h0; (void)HOST_l2c(ll,(s)); \
  20. ll=(c)->h1; (void)HOST_l2c(ll,(s)); \
  21. ll=(c)->h2; (void)HOST_l2c(ll,(s)); \
  22. ll=(c)->h3; (void)HOST_l2c(ll,(s)); \
  23. ll=(c)->h4; (void)HOST_l2c(ll,(s)); \
  24. } while (0)
  25. #define HASH_UPDATE SHA1_Update
  26. #define HASH_TRANSFORM SHA1_Transform
  27. #define HASH_FINAL SHA1_Final
  28. #define HASH_INIT SHA1_Init
  29. #define HASH_BLOCK_DATA_ORDER sha1_block_data_order
  30. #define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \
  31. ix=(a)=ROTATE((a),1) \
  32. )
  33. #ifndef SHA1_ASM
  34. static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
  35. #else
  36. void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
  37. #endif
  38. #include "internal/md32_common.h"
  39. #define INIT_DATA_h0 0x67452301UL
  40. #define INIT_DATA_h1 0xefcdab89UL
  41. #define INIT_DATA_h2 0x98badcfeUL
  42. #define INIT_DATA_h3 0x10325476UL
  43. #define INIT_DATA_h4 0xc3d2e1f0UL
  44. int HASH_INIT(SHA_CTX *c)
  45. {
  46. memset(c, 0, sizeof(*c));
  47. c->h0 = INIT_DATA_h0;
  48. c->h1 = INIT_DATA_h1;
  49. c->h2 = INIT_DATA_h2;
  50. c->h3 = INIT_DATA_h3;
  51. c->h4 = INIT_DATA_h4;
  52. return 1;
  53. }
  54. #define K_00_19 0x5a827999UL
  55. #define K_20_39 0x6ed9eba1UL
  56. #define K_40_59 0x8f1bbcdcUL
  57. #define K_60_79 0xca62c1d6UL
  58. /*
  59. * As pointed out by Wei Dai, F() below can be simplified to the code in
  60. * F_00_19. Wei attributes these optimizations to Peter Gutmann's SHS code,
  61. * and he attributes it to Rich Schroeppel.
  62. * #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
  63. * I've just become aware of another tweak to be made, again from Wei Dai,
  64. * in F_40_59, (x&a)|(y&a) -> (x|y)&a
  65. */
  66. #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
  67. #define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
  68. #define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
  69. #define F_60_79(b,c,d) F_20_39(b,c,d)
  70. #ifndef OPENSSL_SMALL_FOOTPRINT
  71. # define BODY_00_15(i,a,b,c,d,e,f,xi) \
  72. (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
  73. (b)=ROTATE((b),30);
  74. # define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
  75. Xupdate(f,xi,xa,xb,xc,xd); \
  76. (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
  77. (b)=ROTATE((b),30);
  78. # define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
  79. Xupdate(f,xi,xa,xb,xc,xd); \
  80. (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
  81. (b)=ROTATE((b),30);
  82. # define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
  83. Xupdate(f,xa,xa,xb,xc,xd); \
  84. (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
  85. (b)=ROTATE((b),30);
  86. # define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
  87. Xupdate(f,xa,xa,xb,xc,xd); \
  88. (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
  89. (b)=ROTATE((b),30);
  90. # define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
  91. Xupdate(f,xa,xa,xb,xc,xd); \
  92. (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
  93. (b)=ROTATE((b),30);
  94. # ifdef X
  95. # undef X
  96. # endif
  97. # ifndef MD32_XARRAY
  98. /*
  99. * Originally X was an array. As it's automatic it's natural
  100. * to expect RISC compiler to accommodate at least part of it in
  101. * the register bank, isn't it? Unfortunately not all compilers
  102. * "find" this expectation reasonable:-( On order to make such
  103. * compilers generate better code I replace X[] with a bunch of
  104. * X0, X1, etc. See the function body below...
  105. */
  106. # define X(i) XX##i
  107. # else
  108. /*
  109. * However! Some compilers (most notably HP C) get overwhelmed by
  110. * that many local variables so that we have to have the way to
  111. * fall down to the original behavior.
  112. */
  113. # define X(i) XX[i]
  114. # endif
  115. # if !defined(SHA1_ASM)
  116. static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
  117. {
  118. const unsigned char *data = p;
  119. register unsigned MD32_REG_T A, B, C, D, E, T, l;
  120. # ifndef MD32_XARRAY
  121. unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
  122. XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
  123. # else
  124. SHA_LONG XX[16];
  125. # endif
  126. A = c->h0;
  127. B = c->h1;
  128. C = c->h2;
  129. D = c->h3;
  130. E = c->h4;
  131. for (;;) {
  132. const union {
  133. long one;
  134. char little;
  135. } is_endian = {
  136. 1
  137. };
  138. if (!is_endian.little && sizeof(SHA_LONG) == 4
  139. && ((size_t)p % 4) == 0) {
  140. const SHA_LONG *W = (const SHA_LONG *)data;
  141. X(0) = W[0];
  142. X(1) = W[1];
  143. BODY_00_15(0, A, B, C, D, E, T, X(0));
  144. X(2) = W[2];
  145. BODY_00_15(1, T, A, B, C, D, E, X(1));
  146. X(3) = W[3];
  147. BODY_00_15(2, E, T, A, B, C, D, X(2));
  148. X(4) = W[4];
  149. BODY_00_15(3, D, E, T, A, B, C, X(3));
  150. X(5) = W[5];
  151. BODY_00_15(4, C, D, E, T, A, B, X(4));
  152. X(6) = W[6];
  153. BODY_00_15(5, B, C, D, E, T, A, X(5));
  154. X(7) = W[7];
  155. BODY_00_15(6, A, B, C, D, E, T, X(6));
  156. X(8) = W[8];
  157. BODY_00_15(7, T, A, B, C, D, E, X(7));
  158. X(9) = W[9];
  159. BODY_00_15(8, E, T, A, B, C, D, X(8));
  160. X(10) = W[10];
  161. BODY_00_15(9, D, E, T, A, B, C, X(9));
  162. X(11) = W[11];
  163. BODY_00_15(10, C, D, E, T, A, B, X(10));
  164. X(12) = W[12];
  165. BODY_00_15(11, B, C, D, E, T, A, X(11));
  166. X(13) = W[13];
  167. BODY_00_15(12, A, B, C, D, E, T, X(12));
  168. X(14) = W[14];
  169. BODY_00_15(13, T, A, B, C, D, E, X(13));
  170. X(15) = W[15];
  171. BODY_00_15(14, E, T, A, B, C, D, X(14));
  172. BODY_00_15(15, D, E, T, A, B, C, X(15));
  173. data += SHA_CBLOCK;
  174. } else {
  175. (void)HOST_c2l(data, l);
  176. X(0) = l;
  177. (void)HOST_c2l(data, l);
  178. X(1) = l;
  179. BODY_00_15(0, A, B, C, D, E, T, X(0));
  180. (void)HOST_c2l(data, l);
  181. X(2) = l;
  182. BODY_00_15(1, T, A, B, C, D, E, X(1));
  183. (void)HOST_c2l(data, l);
  184. X(3) = l;
  185. BODY_00_15(2, E, T, A, B, C, D, X(2));
  186. (void)HOST_c2l(data, l);
  187. X(4) = l;
  188. BODY_00_15(3, D, E, T, A, B, C, X(3));
  189. (void)HOST_c2l(data, l);
  190. X(5) = l;
  191. BODY_00_15(4, C, D, E, T, A, B, X(4));
  192. (void)HOST_c2l(data, l);
  193. X(6) = l;
  194. BODY_00_15(5, B, C, D, E, T, A, X(5));
  195. (void)HOST_c2l(data, l);
  196. X(7) = l;
  197. BODY_00_15(6, A, B, C, D, E, T, X(6));
  198. (void)HOST_c2l(data, l);
  199. X(8) = l;
  200. BODY_00_15(7, T, A, B, C, D, E, X(7));
  201. (void)HOST_c2l(data, l);
  202. X(9) = l;
  203. BODY_00_15(8, E, T, A, B, C, D, X(8));
  204. (void)HOST_c2l(data, l);
  205. X(10) = l;
  206. BODY_00_15(9, D, E, T, A, B, C, X(9));
  207. (void)HOST_c2l(data, l);
  208. X(11) = l;
  209. BODY_00_15(10, C, D, E, T, A, B, X(10));
  210. (void)HOST_c2l(data, l);
  211. X(12) = l;
  212. BODY_00_15(11, B, C, D, E, T, A, X(11));
  213. (void)HOST_c2l(data, l);
  214. X(13) = l;
  215. BODY_00_15(12, A, B, C, D, E, T, X(12));
  216. (void)HOST_c2l(data, l);
  217. X(14) = l;
  218. BODY_00_15(13, T, A, B, C, D, E, X(13));
  219. (void)HOST_c2l(data, l);
  220. X(15) = l;
  221. BODY_00_15(14, E, T, A, B, C, D, X(14));
  222. BODY_00_15(15, D, E, T, A, B, C, X(15));
  223. }
  224. BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
  225. BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
  226. BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
  227. BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
  228. BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
  229. BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
  230. BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
  231. BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
  232. BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
  233. BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
  234. BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
  235. BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
  236. BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
  237. BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
  238. BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
  239. BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
  240. BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
  241. BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
  242. BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
  243. BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
  244. BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
  245. BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
  246. BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
  247. BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
  248. BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
  249. BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
  250. BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
  251. BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
  252. BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
  253. BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
  254. BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
  255. BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
  256. BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
  257. BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
  258. BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
  259. BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
  260. BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
  261. BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
  262. BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
  263. BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
  264. BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
  265. BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
  266. BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
  267. BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
  268. BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
  269. BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
  270. BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
  271. BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
  272. BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
  273. BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
  274. BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
  275. BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
  276. BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
  277. BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
  278. BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
  279. BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
  280. BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
  281. BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
  282. BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
  283. BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
  284. BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
  285. BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
  286. BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
  287. BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
  288. c->h0 = (c->h0 + E) & 0xffffffffL;
  289. c->h1 = (c->h1 + T) & 0xffffffffL;
  290. c->h2 = (c->h2 + A) & 0xffffffffL;
  291. c->h3 = (c->h3 + B) & 0xffffffffL;
  292. c->h4 = (c->h4 + C) & 0xffffffffL;
  293. if (--num == 0)
  294. break;
  295. A = c->h0;
  296. B = c->h1;
  297. C = c->h2;
  298. D = c->h3;
  299. E = c->h4;
  300. }
  301. }
  302. # endif
  303. #else /* OPENSSL_SMALL_FOOTPRINT */
  304. # define BODY_00_15(xi) do { \
  305. T=E+K_00_19+F_00_19(B,C,D); \
  306. E=D, D=C, C=ROTATE(B,30), B=A; \
  307. A=ROTATE(A,5)+T+xi; } while(0)
  308. # define BODY_16_19(xa,xb,xc,xd) do { \
  309. Xupdate(T,xa,xa,xb,xc,xd); \
  310. T+=E+K_00_19+F_00_19(B,C,D); \
  311. E=D, D=C, C=ROTATE(B,30), B=A; \
  312. A=ROTATE(A,5)+T; } while(0)
  313. # define BODY_20_39(xa,xb,xc,xd) do { \
  314. Xupdate(T,xa,xa,xb,xc,xd); \
  315. T+=E+K_20_39+F_20_39(B,C,D); \
  316. E=D, D=C, C=ROTATE(B,30), B=A; \
  317. A=ROTATE(A,5)+T; } while(0)
  318. # define BODY_40_59(xa,xb,xc,xd) do { \
  319. Xupdate(T,xa,xa,xb,xc,xd); \
  320. T+=E+K_40_59+F_40_59(B,C,D); \
  321. E=D, D=C, C=ROTATE(B,30), B=A; \
  322. A=ROTATE(A,5)+T; } while(0)
  323. # define BODY_60_79(xa,xb,xc,xd) do { \
  324. Xupdate(T,xa,xa,xb,xc,xd); \
  325. T=E+K_60_79+F_60_79(B,C,D); \
  326. E=D, D=C, C=ROTATE(B,30), B=A; \
  327. A=ROTATE(A,5)+T+xa; } while(0)
  328. # if !defined(SHA1_ASM)
  329. static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
  330. {
  331. const unsigned char *data = p;
  332. register unsigned MD32_REG_T A, B, C, D, E, T, l;
  333. int i;
  334. SHA_LONG X[16];
  335. A = c->h0;
  336. B = c->h1;
  337. C = c->h2;
  338. D = c->h3;
  339. E = c->h4;
  340. for (;;) {
  341. for (i = 0; i < 16; i++) {
  342. (void)HOST_c2l(data, l);
  343. X[i] = l;
  344. BODY_00_15(X[i]);
  345. }
  346. for (i = 0; i < 4; i++) {
  347. BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
  348. }
  349. for (; i < 24; i++) {
  350. BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
  351. X[(i + 13) & 15]);
  352. }
  353. for (i = 0; i < 20; i++) {
  354. BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
  355. X[(i + 5) & 15]);
  356. }
  357. for (i = 4; i < 24; i++) {
  358. BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
  359. X[(i + 5) & 15]);
  360. }
  361. c->h0 = (c->h0 + A) & 0xffffffffL;
  362. c->h1 = (c->h1 + B) & 0xffffffffL;
  363. c->h2 = (c->h2 + C) & 0xffffffffL;
  364. c->h3 = (c->h3 + D) & 0xffffffffL;
  365. c->h4 = (c->h4 + E) & 0xffffffffL;
  366. if (--num == 0)
  367. break;
  368. A = c->h0;
  369. B = c->h1;
  370. C = c->h2;
  371. D = c->h3;
  372. E = c->h4;
  373. }
  374. }
  375. # endif
  376. #endif