sha256.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. /* crypto/sha/sha256.c */
  2. /* ====================================================================
  3. * Copyright (c) 2004 The OpenSSL Project. All rights reserved
  4. * according to the OpenSSL license [found in ../../LICENSE].
  5. * ====================================================================
  6. */
  7. #include <openssl/opensslconf.h>
  8. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #include <openssl/crypto.h>
  12. #include <openssl/sha.h>
  13. #include <openssl/opensslv.h>
  14. __fips_constseg
  15. const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
  16. int SHA224_Init (SHA256_CTX *c)
  17. {
  18. memset (c,0,sizeof(*c));
  19. c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
  20. c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
  21. c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
  22. c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
  23. c->md_len=SHA224_DIGEST_LENGTH;
  24. return 1;
  25. }
  26. int SHA256_Init (SHA256_CTX *c)
  27. {
  28. memset (c,0,sizeof(*c));
  29. c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
  30. c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
  31. c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
  32. c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
  33. c->md_len=SHA256_DIGEST_LENGTH;
  34. return 1;
  35. }
  36. unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
  37. {
  38. SHA256_CTX c;
  39. static unsigned char m[SHA224_DIGEST_LENGTH];
  40. if (md == NULL) md=m;
  41. SHA224_Init(&c);
  42. SHA256_Update(&c,d,n);
  43. SHA256_Final(md,&c);
  44. OPENSSL_cleanse(&c,sizeof(c));
  45. return(md);
  46. }
  47. unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
  48. {
  49. SHA256_CTX c;
  50. static unsigned char m[SHA256_DIGEST_LENGTH];
  51. if (md == NULL) md=m;
  52. SHA256_Init(&c);
  53. SHA256_Update(&c,d,n);
  54. SHA256_Final(md,&c);
  55. OPENSSL_cleanse(&c,sizeof(c));
  56. return(md);
  57. }
  58. int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
  59. { return SHA256_Update (c,data,len); }
  60. int SHA224_Final (unsigned char *md, SHA256_CTX *c)
  61. { return SHA256_Final (md,c); }
  62. #define DATA_ORDER_IS_BIG_ENDIAN
  63. #define HASH_LONG SHA_LONG
  64. #define HASH_CTX SHA256_CTX
  65. #define HASH_CBLOCK SHA_CBLOCK
  66. /*
  67. * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
  68. * default: case below covers for it. It's not clear however if it's
  69. * permitted to truncate to amount of bytes not divisible by 4. I bet not,
  70. * but if it is, then default: case shall be extended. For reference.
  71. * Idea behind separate cases for pre-defined lenghts is to let the
  72. * compiler decide if it's appropriate to unroll small loops.
  73. */
  74. #define HASH_MAKE_STRING(c,s) do { \
  75. unsigned long ll; \
  76. unsigned int nn; \
  77. switch ((c)->md_len) \
  78. { case SHA224_DIGEST_LENGTH: \
  79. for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
  80. { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
  81. break; \
  82. case SHA256_DIGEST_LENGTH: \
  83. for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
  84. { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
  85. break; \
  86. default: \
  87. if ((c)->md_len > SHA256_DIGEST_LENGTH) \
  88. return 0; \
  89. for (nn=0;nn<(c)->md_len/4;nn++) \
  90. { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
  91. break; \
  92. } \
  93. } while (0)
  94. #define HASH_UPDATE SHA256_Update
  95. #define HASH_TRANSFORM SHA256_Transform
  96. #define HASH_FINAL SHA256_Final
  97. #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
  98. #ifndef SHA256_ASM
  99. static
  100. #endif
  101. void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
  102. #include "md32_common.h"
  103. #ifndef SHA256_ASM
  104. __fips_constseg
  105. static const SHA_LONG K256[64] = {
  106. 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
  107. 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
  108. 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
  109. 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
  110. 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
  111. 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
  112. 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
  113. 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
  114. 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
  115. 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
  116. 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
  117. 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
  118. 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
  119. 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
  120. 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
  121. 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
  122. /*
  123. * FIPS specification refers to right rotations, while our ROTATE macro
  124. * is left one. This is why you might notice that rotation coefficients
  125. * differ from those observed in FIPS document by 32-N...
  126. */
  127. #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
  128. #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
  129. #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
  130. #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
  131. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  132. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  133. #ifdef OPENSSL_SMALL_FOOTPRINT
  134. static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
  135. {
  136. unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
  137. SHA_LONG X[16],l;
  138. int i;
  139. const unsigned char *data=in;
  140. while (num--) {
  141. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  142. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  143. for (i=0;i<16;i++)
  144. {
  145. HOST_c2l(data,l); T1 = X[i] = l;
  146. T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
  147. T2 = Sigma0(a) + Maj(a,b,c);
  148. h = g; g = f; f = e; e = d + T1;
  149. d = c; c = b; b = a; a = T1 + T2;
  150. }
  151. for (;i<64;i++)
  152. {
  153. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
  154. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
  155. T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
  156. T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
  157. T2 = Sigma0(a) + Maj(a,b,c);
  158. h = g; g = f; f = e; e = d + T1;
  159. d = c; c = b; b = a; a = T1 + T2;
  160. }
  161. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  162. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  163. }
  164. }
  165. #else
  166. #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  167. T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
  168. h = Sigma0(a) + Maj(a,b,c); \
  169. d += T1; h += T1; } while (0)
  170. #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
  171. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
  172. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
  173. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
  174. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  175. static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
  176. {
  177. unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
  178. SHA_LONG X[16];
  179. int i;
  180. const unsigned char *data=in;
  181. const union { long one; char little; } is_endian = {1};
  182. while (num--) {
  183. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  184. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  185. if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
  186. {
  187. const SHA_LONG *W=(const SHA_LONG *)data;
  188. T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
  189. T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
  190. T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
  191. T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
  192. T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
  193. T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
  194. T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
  195. T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
  196. T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
  197. T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
  198. T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
  199. T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
  200. T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
  201. T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
  202. T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
  203. T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
  204. data += SHA256_CBLOCK;
  205. }
  206. else
  207. {
  208. SHA_LONG l;
  209. HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
  210. HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
  211. HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
  212. HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
  213. HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
  214. HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
  215. HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
  216. HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
  217. HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
  218. HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
  219. HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
  220. HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
  221. HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
  222. HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
  223. HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
  224. HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
  225. }
  226. for (i=16;i<64;i+=8)
  227. {
  228. ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
  229. ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
  230. ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
  231. ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
  232. ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
  233. ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
  234. ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
  235. ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
  236. }
  237. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  238. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  239. }
  240. }
  241. #endif
  242. #endif /* SHA256_ASM */
  243. #endif /* OPENSSL_NO_SHA256 */