123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684 |
- /*
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <assert.h>
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
- /*
- * Here follows specialised variants of bn_add_words() and bn_sub_words().
- * They have the property performing operations on arrays of different sizes.
- * The sizes of those arrays is expressed through cl, which is the common
- * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
- * between the two lengths, calculated as len(a)-len(b). All lengths are the
- * number of BN_ULONGs... For the operations that require a result array as
- * parameter, it must have the length cl+abs(dl). These functions should
- * probably end up in bn_asm.c as soon as there are assembler counterparts
- * for the systems that use assembler files.
- */
- BN_ULONG bn_sub_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
- {
- BN_ULONG c, t;
- assert(cl >= 0);
- c = bn_sub_words(r, a, b, cl);
- if (dl == 0)
- return c;
- r += cl;
- a += cl;
- b += cl;
- if (dl < 0) {
- for (;;) {
- t = b[0];
- r[0] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
- t = b[1];
- r[1] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
- t = b[2];
- r[2] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
- t = b[3];
- r[3] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
- b += 4;
- r += 4;
- }
- } else {
- int save_dl = dl;
- while (c) {
- t = a[0];
- r[0] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
- t = a[1];
- r[1] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
- t = a[2];
- r[2] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
- t = a[3];
- r[3] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
- save_dl = dl;
- a += 4;
- r += 4;
- }
- if (dl > 0) {
- if (save_dl > dl) {
- switch (save_dl - dl) {
- case 1:
- r[1] = a[1];
- if (--dl <= 0)
- break;
- /* fall thru */
- case 2:
- r[2] = a[2];
- if (--dl <= 0)
- break;
- /* fall thru */
- case 3:
- r[3] = a[3];
- if (--dl <= 0)
- break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0) {
- for (;;) {
- r[0] = a[0];
- if (--dl <= 0)
- break;
- r[1] = a[1];
- if (--dl <= 0)
- break;
- r[2] = a[2];
- if (--dl <= 0)
- break;
- r[3] = a[3];
- if (--dl <= 0)
- break;
- a += 4;
- r += 4;
- }
- }
- }
- return c;
- }
- #endif
- #ifdef BN_RECURSION
- /*
- * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
- * Computer Programming, Vol. 2)
- */
- /*-
- * r is 2*n2 words in size,
- * a and b are both n2 words in size.
- * n2 must be a power of 2.
- * We multiply and return the result.
- * t must be 2*n2 words in size
- * We calculate
- * a[0]*b[0]
- * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
- * a[1]*b[1]
- */
- /* dnX may not be positive, but n2/2+dnX has to be */
- void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- int dna, int dnb, BN_ULONG *t)
- {
- int n = n2 / 2, c1, c2;
- int tna = n + dna, tnb = n + dnb;
- unsigned int neg, zero;
- BN_ULONG ln, lo, *p;
- # ifdef BN_MUL_COMBA
- # if 0
- if (n2 == 4) {
- bn_mul_comba4(r, a, b);
- return;
- }
- # endif
- /*
- * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
- * [steve]
- */
- if (n2 == 8 && dna == 0 && dnb == 0) {
- bn_mul_comba8(r, a, b);
- return;
- }
- # endif /* BN_MUL_COMBA */
- /* Else do normal multiply */
- if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
- bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
- if ((dna + dnb) < 0)
- memset(&r[2 * n2 + dna + dnb], 0,
- sizeof(BN_ULONG) * -(dna + dnb));
- return;
- }
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
- c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
- zero = neg = 0;
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- break;
- case -3:
- zero = 1;
- break;
- case -2:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- zero = 1;
- break;
- case 2:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- neg = 1;
- break;
- case 3:
- zero = 1;
- break;
- case 4:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
- break;
- }
- # ifdef BN_MUL_COMBA
- if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
- * extra args to do this well */
- if (!zero)
- bn_mul_comba4(&(t[n2]), t, &(t[n]));
- else
- memset(&t[n2], 0, sizeof(*t) * 8);
- bn_mul_comba4(r, a, b);
- bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
- } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
- * take extra args to do
- * this well */
- if (!zero)
- bn_mul_comba8(&(t[n2]), t, &(t[n]));
- else
- memset(&t[n2], 0, sizeof(*t) * 16);
- bn_mul_comba8(r, a, b);
- bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
- } else
- # endif /* BN_MUL_COMBA */
- {
- p = &(t[n2 * 2]);
- if (!zero)
- bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
- else
- memset(&t[n2], 0, sizeof(*t) * n2);
- bn_mul_recursive(r, a, b, n, 0, 0, p);
- bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
- }
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
- if (neg) { /* if t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- } else {
- /* Might have a carry */
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
- }
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
- }
- /*
- * n+tn is the word length t needs to be n*4 is size, as does r
- */
- /* tnX may not be negative but less than n */
- void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
- int tna, int tnb, BN_ULONG *t)
- {
- int i, j, n2 = n * 2;
- int c1, c2, neg;
- BN_ULONG ln, lo, *p;
- if (n < 8) {
- bn_mul_normal(r, a, n + tna, b, n + tnb);
- return;
- }
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
- c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
- neg = 0;
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- break;
- case -3:
- case -2:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- case 2:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- neg = 1;
- break;
- case 3:
- case 4:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
- break;
- }
- /*
- * The zero case isn't yet implemented here. The speedup would probably
- * be negligible.
- */
- # if 0
- if (n == 4) {
- bn_mul_comba4(&(t[n2]), t, &(t[n]));
- bn_mul_comba4(r, a, b);
- bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
- memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
- } else
- # endif
- if (n == 8) {
- bn_mul_comba8(&(t[n2]), t, &(t[n]));
- bn_mul_comba8(r, a, b);
- bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
- memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
- } else {
- p = &(t[n2 * 2]);
- bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
- bn_mul_recursive(r, a, b, n, 0, 0, p);
- i = n / 2;
- /*
- * If there is only a bottom half to the number, just do it
- */
- if (tna > tnb)
- j = tna - i;
- else
- j = tnb - i;
- if (j == 0) {
- bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
- } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
- bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- memset(&(r[n2 + tna + tnb]), 0,
- sizeof(BN_ULONG) * (n2 - tna - tnb));
- } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
- memset(&r[n2], 0, sizeof(*r) * n2);
- if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
- && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
- bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
- } else {
- for (;;) {
- i /= 2;
- /*
- * these simplified conditions work exclusively because
- * difference between tna and tnb is 1 or 0
- */
- if (i < tna || i < tnb) {
- bn_mul_part_recursive(&(r[n2]),
- &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- break;
- } else if (i == tna || i == tnb) {
- bn_mul_recursive(&(r[n2]),
- &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- break;
- }
- }
- }
- }
- }
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
- if (neg) { /* if t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- } else {
- /* Might have a carry */
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
- }
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
- }
- /*-
- * a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- */
- void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- BN_ULONG *t)
- {
- int n = n2 / 2;
- bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
- if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
- bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- } else {
- bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
- bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
- }
- }
- #endif /* BN_RECURSION */
- int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = bn_mul_fixed_top(r, a, b, ctx);
- bn_correct_top(r);
- bn_check_top(r);
- return ret;
- }
- int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- int top, al, bl;
- BIGNUM *rr;
- #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- int i;
- #endif
- #ifdef BN_RECURSION
- BIGNUM *t = NULL;
- int j = 0, k;
- #endif
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(r);
- al = a->top;
- bl = b->top;
- if ((al == 0) || (bl == 0)) {
- BN_zero(r);
- return 1;
- }
- top = al + bl;
- BN_CTX_start(ctx);
- if ((r == a) || (r == b)) {
- if ((rr = BN_CTX_get(ctx)) == NULL)
- goto err;
- } else
- rr = r;
- #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- i = al - bl;
- #endif
- #ifdef BN_MUL_COMBA
- if (i == 0) {
- # if 0
- if (al == 4) {
- if (bn_wexpand(rr, 8) == NULL)
- goto err;
- rr->top = 8;
- bn_mul_comba4(rr->d, a->d, b->d);
- goto end;
- }
- # endif
- if (al == 8) {
- if (bn_wexpand(rr, 16) == NULL)
- goto err;
- rr->top = 16;
- bn_mul_comba8(rr->d, a->d, b->d);
- goto end;
- }
- }
- #endif /* BN_MUL_COMBA */
- #ifdef BN_RECURSION
- if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
- if (i >= -1 && i <= 1) {
- /*
- * Find out the power of two lower or equal to the longest of the
- * two numbers
- */
- if (i >= 0) {
- j = BN_num_bits_word((BN_ULONG)al);
- }
- if (i == -1) {
- j = BN_num_bits_word((BN_ULONG)bl);
- }
- j = 1 << (j - 1);
- assert(j <= al || j <= bl);
- k = j + j;
- t = BN_CTX_get(ctx);
- if (t == NULL)
- goto err;
- if (al > j || bl > j) {
- if (bn_wexpand(t, k * 4) == NULL)
- goto err;
- if (bn_wexpand(rr, k * 4) == NULL)
- goto err;
- bn_mul_part_recursive(rr->d, a->d, b->d,
- j, al - j, bl - j, t->d);
- } else { /* al <= j || bl <= j */
- if (bn_wexpand(t, k * 2) == NULL)
- goto err;
- if (bn_wexpand(rr, k * 2) == NULL)
- goto err;
- bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
- }
- rr->top = top;
- goto end;
- }
- }
- #endif /* BN_RECURSION */
- if (bn_wexpand(rr, top) == NULL)
- goto err;
- rr->top = top;
- bn_mul_normal(rr->d, a->d, al, b->d, bl);
- #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- end:
- #endif
- rr->neg = a->neg ^ b->neg;
- rr->flags |= BN_FLG_FIXED_TOP;
- if (r != rr && BN_copy(r, rr) == NULL)
- goto err;
- ret = 1;
- err:
- bn_check_top(r);
- BN_CTX_end(ctx);
- return ret;
- }
- void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
- {
- BN_ULONG *rr;
- if (na < nb) {
- int itmp;
- BN_ULONG *ltmp;
- itmp = na;
- na = nb;
- nb = itmp;
- ltmp = a;
- a = b;
- b = ltmp;
- }
- rr = &(r[na]);
- if (nb <= 0) {
- (void)bn_mul_words(r, a, na, 0);
- return;
- } else
- rr[0] = bn_mul_words(r, a, na, b[0]);
- for (;;) {
- if (--nb <= 0)
- return;
- rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
- if (--nb <= 0)
- return;
- rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
- if (--nb <= 0)
- return;
- rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
- if (--nb <= 0)
- return;
- rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
- rr += 4;
- r += 4;
- b += 4;
- }
- }
- void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
- {
- bn_mul_words(r, a, n, b[0]);
- for (;;) {
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[1]), a, n, b[1]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[2]), a, n, b[2]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[3]), a, n, b[3]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[4]), a, n, b[4]);
- r += 4;
- b += 4;
- }
- }
|