123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- /*
- * Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
- /*
- * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
- * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
- * Theory", algorithm 1.5.1). 'p' must be prime!
- */
- {
- BIGNUM *ret = in;
- int err = 1;
- int r;
- BIGNUM *A, *b, *q, *t, *x, *y;
- int e, i, j;
- int used_ctx = 0;
- if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
- if (BN_abs_is_word(p, 2)) {
- if (ret == NULL)
- ret = BN_new();
- if (ret == NULL)
- goto end;
- if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
- if (ret != in)
- BN_free(ret);
- return NULL;
- }
- bn_check_top(ret);
- return ret;
- }
- ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
- return NULL;
- }
- if (BN_is_zero(a) || BN_is_one(a)) {
- if (ret == NULL)
- ret = BN_new();
- if (ret == NULL)
- goto end;
- if (!BN_set_word(ret, BN_is_one(a))) {
- if (ret != in)
- BN_free(ret);
- return NULL;
- }
- bn_check_top(ret);
- return ret;
- }
- BN_CTX_start(ctx);
- used_ctx = 1;
- A = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- q = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto end;
- if (ret == NULL)
- ret = BN_new();
- if (ret == NULL)
- goto end;
- /* A = a mod p */
- if (!BN_nnmod(A, a, p, ctx))
- goto end;
- /* now write |p| - 1 as 2^e*q where q is odd */
- e = 1;
- while (!BN_is_bit_set(p, e))
- e++;
- /* we'll set q later (if needed) */
- if (e == 1) {
- /*-
- * The easy case: (|p|-1)/2 is odd, so 2 has an inverse
- * modulo (|p|-1)/2, and square roots can be computed
- * directly by modular exponentiation.
- * We have
- * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
- * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
- */
- if (!BN_rshift(q, p, 2))
- goto end;
- q->neg = 0;
- if (!BN_add_word(q, 1))
- goto end;
- if (!BN_mod_exp(ret, A, q, p, ctx))
- goto end;
- err = 0;
- goto vrfy;
- }
- if (e == 2) {
- /*-
- * |p| == 5 (mod 8)
- *
- * In this case 2 is always a non-square since
- * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
- * So if a really is a square, then 2*a is a non-square.
- * Thus for
- * b := (2*a)^((|p|-5)/8),
- * i := (2*a)*b^2
- * we have
- * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
- * = (2*a)^((p-1)/2)
- * = -1;
- * so if we set
- * x := a*b*(i-1),
- * then
- * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
- * = a^2 * b^2 * (-2*i)
- * = a*(-i)*(2*a*b^2)
- * = a*(-i)*i
- * = a.
- *
- * (This is due to A.O.L. Atkin,
- * Subject: Square Roots and Cognate Matters modulo p=8n+5.
- * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
- * November 1992.)
- */
- /* t := 2*a */
- if (!BN_mod_lshift1_quick(t, A, p))
- goto end;
- /* b := (2*a)^((|p|-5)/8) */
- if (!BN_rshift(q, p, 3))
- goto end;
- q->neg = 0;
- if (!BN_mod_exp(b, t, q, p, ctx))
- goto end;
- /* y := b^2 */
- if (!BN_mod_sqr(y, b, p, ctx))
- goto end;
- /* t := (2*a)*b^2 - 1 */
- if (!BN_mod_mul(t, t, y, p, ctx))
- goto end;
- if (!BN_sub_word(t, 1))
- goto end;
- /* x = a*b*t */
- if (!BN_mod_mul(x, A, b, p, ctx))
- goto end;
- if (!BN_mod_mul(x, x, t, p, ctx))
- goto end;
- if (!BN_copy(ret, x))
- goto end;
- err = 0;
- goto vrfy;
- }
- /*
- * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
- * find some y that is not a square.
- */
- if (!BN_copy(q, p))
- goto end; /* use 'q' as temp */
- q->neg = 0;
- i = 2;
- do {
- /*
- * For efficiency, try small numbers first; if this fails, try random
- * numbers.
- */
- if (i < 22) {
- if (!BN_set_word(y, i))
- goto end;
- } else {
- if (!BN_priv_rand_ex(y, BN_num_bits(p), 0, 0, ctx))
- goto end;
- if (BN_ucmp(y, p) >= 0) {
- if (!(p->neg ? BN_add : BN_sub) (y, y, p))
- goto end;
- }
- /* now 0 <= y < |p| */
- if (BN_is_zero(y))
- if (!BN_set_word(y, i))
- goto end;
- }
- r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
- if (r < -1)
- goto end;
- if (r == 0) {
- /* m divides p */
- ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
- goto end;
- }
- }
- while (r == 1 && ++i < 82);
- if (r != -1) {
- /*
- * Many rounds and still no non-square -- this is more likely a bug
- * than just bad luck. Even if p is not prime, we should have found
- * some y such that r == -1.
- */
- ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
- goto end;
- }
- /* Here's our actual 'q': */
- if (!BN_rshift(q, q, e))
- goto end;
- /*
- * Now that we have some non-square, we can find an element of order 2^e
- * by computing its q'th power.
- */
- if (!BN_mod_exp(y, y, q, p, ctx))
- goto end;
- if (BN_is_one(y)) {
- ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
- goto end;
- }
- /*-
- * Now we know that (if p is indeed prime) there is an integer
- * k, 0 <= k < 2^e, such that
- *
- * a^q * y^k == 1 (mod p).
- *
- * As a^q is a square and y is not, k must be even.
- * q+1 is even, too, so there is an element
- *
- * X := a^((q+1)/2) * y^(k/2),
- *
- * and it satisfies
- *
- * X^2 = a^q * a * y^k
- * = a,
- *
- * so it is the square root that we are looking for.
- */
- /* t := (q-1)/2 (note that q is odd) */
- if (!BN_rshift1(t, q))
- goto end;
- /* x := a^((q-1)/2) */
- if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */
- if (!BN_nnmod(t, A, p, ctx))
- goto end;
- if (BN_is_zero(t)) {
- /* special case: a == 0 (mod p) */
- BN_zero(ret);
- err = 0;
- goto end;
- } else if (!BN_one(x))
- goto end;
- } else {
- if (!BN_mod_exp(x, A, t, p, ctx))
- goto end;
- if (BN_is_zero(x)) {
- /* special case: a == 0 (mod p) */
- BN_zero(ret);
- err = 0;
- goto end;
- }
- }
- /* b := a*x^2 (= a^q) */
- if (!BN_mod_sqr(b, x, p, ctx))
- goto end;
- if (!BN_mod_mul(b, b, A, p, ctx))
- goto end;
- /* x := a*x (= a^((q+1)/2)) */
- if (!BN_mod_mul(x, x, A, p, ctx))
- goto end;
- while (1) {
- /*-
- * Now b is a^q * y^k for some even k (0 <= k < 2^E
- * where E refers to the original value of e, which we
- * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
- *
- * We have a*b = x^2,
- * y^2^(e-1) = -1,
- * b^2^(e-1) = 1.
- */
- if (BN_is_one(b)) {
- if (!BN_copy(ret, x))
- goto end;
- err = 0;
- goto vrfy;
- }
- /* find smallest i such that b^(2^i) = 1 */
- i = 1;
- if (!BN_mod_sqr(t, b, p, ctx))
- goto end;
- while (!BN_is_one(t)) {
- i++;
- if (i == e) {
- ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
- goto end;
- }
- if (!BN_mod_mul(t, t, t, p, ctx))
- goto end;
- }
- /* t := y^2^(e - i - 1) */
- if (!BN_copy(t, y))
- goto end;
- for (j = e - i - 1; j > 0; j--) {
- if (!BN_mod_sqr(t, t, p, ctx))
- goto end;
- }
- if (!BN_mod_mul(y, t, t, p, ctx))
- goto end;
- if (!BN_mod_mul(x, x, t, p, ctx))
- goto end;
- if (!BN_mod_mul(b, b, y, p, ctx))
- goto end;
- e = i;
- }
- vrfy:
- if (!err) {
- /*
- * verify the result -- the input might have been not a square (test
- * added in 0.9.8)
- */
- if (!BN_mod_sqr(x, ret, p, ctx))
- err = 1;
- if (!err && 0 != BN_cmp(x, A)) {
- ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
- err = 1;
- }
- }
- end:
- if (err) {
- if (ret != in)
- BN_clear_free(ret);
- ret = NULL;
- }
- if (used_ctx)
- BN_CTX_end(ctx);
- bn_check_top(ret);
- return ret;
- }
|