123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- =pod
- =head1 NAME
- BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
- BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp, BN_gcd -
- arithmetic operations on BIGNUMs
- =head1 SYNOPSIS
- #include <openssl/bn.h>
- int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
- int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
- int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
- int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
- int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
- BN_CTX *ctx);
- int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
- int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
- int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx);
- int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx);
- int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
- BN_CTX *ctx);
- int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
- BIGNUM *BN_mod_sqrt(BIGNUM *in, BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
- int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
- int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
- const BIGNUM *m, BN_CTX *ctx);
- int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
- =head1 DESCRIPTION
- BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
- I<r> may be the same B<BIGNUM> as I<a> or I<b>.
- BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
- I<r> may be the same B<BIGNUM> as I<a> or I<b>.
- BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
- I<r> may be the same B<BIGNUM> as I<a> or I<b>.
- For multiplication by powers of 2, use L<BN_lshift(3)>.
- BN_sqr() takes the square of I<a> and places the result in I<r>
- (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
- This function is faster than BN_mul(r,a,a).
- BN_div() divides I<a> by I<d> and places the result in I<dv> and the
- remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
- be B<NULL>, in which case the respective value is not returned.
- The result is rounded towards zero; thus if I<a> is negative, the
- remainder will be zero or negative.
- For division by powers of 2, use BN_rshift(3).
- BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
- BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
- remainder in I<r>.
- BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
- result in I<r>.
- BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
- nonnegative result in I<r>.
- BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
- remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
- the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
- repeated computations using the same modulus, see
- L<BN_mod_mul_montgomery(3)> and
- L<BN_mod_mul_reciprocal(3)>.
- BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
- result in I<r>.
- BN_mod_sqrt() returns the modular square root of I<a> such that
- C<in^2 = a (mod p)>. The modulus I<p> must be a
- prime, otherwise an error or an incorrect "result" will be returned.
- The result is stored into I<in> which can be NULL. The result will be
- newly allocated in that case.
- BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
- (C<r=a^p>). This function is faster than repeated applications of
- BN_mul().
- BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
- m>). This function uses less time and space than BN_exp(). Do not call this
- function when B<m> is even and any of the parameters have the
- B<BN_FLG_CONSTTIME> flag set.
- BN_gcd() computes the greatest common divisor of I<a> and I<b> and
- places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
- I<b>.
- For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
- temporary variables; see L<BN_CTX_new(3)>.
- Unless noted otherwise, the result B<BIGNUM> must be different from
- the arguments.
- =head1 RETURN VALUES
- The BN_mod_sqrt() returns the result (possibly incorrect if I<p> is
- not a prime), or NULL.
- For all remaining functions, 1 is returned for success, 0 on error. The return
- value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
- The error codes can be obtained by L<ERR_get_error(3)>.
- =head1 SEE ALSO
- L<ERR_get_error(3)>, L<BN_CTX_new(3)>,
- L<BN_add_word(3)>, L<BN_set_bit(3)>
- =head1 COPYRIGHT
- Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the Apache License 2.0 (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|