e_afalg.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. /*
  2. * Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /* We need to use some deprecated APIs */
  10. #define OPENSSL_SUPPRESS_DEPRECATED
  11. /* Required for vmsplice */
  12. #ifndef _GNU_SOURCE
  13. # define _GNU_SOURCE
  14. #endif
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include <unistd.h>
  18. #include <openssl/engine.h>
  19. #include <openssl/async.h>
  20. #include <openssl/err.h>
  21. #include "internal/nelem.h"
  22. #include <sys/socket.h>
  23. #include <linux/version.h>
  24. #define K_MAJ 4
  25. #define K_MIN1 1
  26. #define K_MIN2 0
  27. #if LINUX_VERSION_CODE < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2) || \
  28. !defined(AF_ALG)
  29. # ifndef PEDANTIC
  30. # warning "AFALG ENGINE requires Kernel Headers >= 4.1.0"
  31. # warning "Skipping Compilation of AFALG engine"
  32. # endif
  33. void engine_load_afalg_int(void);
  34. void engine_load_afalg_int(void)
  35. {
  36. }
  37. #else
  38. # include <linux/if_alg.h>
  39. # include <fcntl.h>
  40. # include <sys/utsname.h>
  41. # include <linux/aio_abi.h>
  42. # include <sys/syscall.h>
  43. # include <errno.h>
  44. # include "e_afalg.h"
  45. # include "e_afalg_err.c"
  46. # ifndef SOL_ALG
  47. # define SOL_ALG 279
  48. # endif
  49. # ifdef ALG_ZERO_COPY
  50. # ifndef SPLICE_F_GIFT
  51. # define SPLICE_F_GIFT (0x08)
  52. # endif
  53. # endif
  54. # define ALG_AES_IV_LEN 16
  55. # define ALG_IV_LEN(len) (sizeof(struct af_alg_iv) + (len))
  56. # define ALG_OP_TYPE unsigned int
  57. # define ALG_OP_LEN (sizeof(ALG_OP_TYPE))
  58. # ifdef OPENSSL_NO_DYNAMIC_ENGINE
  59. void engine_load_afalg_int(void);
  60. # endif
  61. /* Local Linkage Functions */
  62. static int afalg_init_aio(afalg_aio *aio);
  63. static int afalg_fin_cipher_aio(afalg_aio *ptr, int sfd,
  64. unsigned char *buf, size_t len);
  65. static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
  66. const char *ciphername);
  67. static int afalg_destroy(ENGINE *e);
  68. static int afalg_init(ENGINE *e);
  69. static int afalg_finish(ENGINE *e);
  70. static const EVP_CIPHER *afalg_aes_cbc(int nid);
  71. static cbc_handles *get_cipher_handle(int nid);
  72. static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
  73. const int **nids, int nid);
  74. static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  75. const unsigned char *iv, int enc);
  76. static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  77. const unsigned char *in, size_t inl);
  78. static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx);
  79. static int afalg_chk_platform(void);
  80. /* Engine Id and Name */
  81. static const char *engine_afalg_id = "afalg";
  82. static const char *engine_afalg_name = "AFALG engine support";
  83. static int afalg_cipher_nids[] = {
  84. NID_aes_128_cbc,
  85. NID_aes_192_cbc,
  86. NID_aes_256_cbc,
  87. };
  88. static cbc_handles cbc_handle[] = {{AES_KEY_SIZE_128, NULL},
  89. {AES_KEY_SIZE_192, NULL},
  90. {AES_KEY_SIZE_256, NULL}};
  91. static ossl_inline int io_setup(unsigned n, aio_context_t *ctx)
  92. {
  93. return syscall(__NR_io_setup, n, ctx);
  94. }
  95. static ossl_inline int eventfd(int n)
  96. {
  97. return syscall(__NR_eventfd2, n, 0);
  98. }
  99. static ossl_inline int io_destroy(aio_context_t ctx)
  100. {
  101. return syscall(__NR_io_destroy, ctx);
  102. }
  103. static ossl_inline int io_read(aio_context_t ctx, long n, struct iocb **iocb)
  104. {
  105. return syscall(__NR_io_submit, ctx, n, iocb);
  106. }
  107. /* A version of 'struct timespec' with 32-bit time_t and nanoseconds. */
  108. struct __timespec32
  109. {
  110. __kernel_long_t tv_sec;
  111. __kernel_long_t tv_nsec;
  112. };
  113. static ossl_inline int io_getevents(aio_context_t ctx, long min, long max,
  114. struct io_event *events,
  115. struct timespec *timeout)
  116. {
  117. #if defined(__NR_io_pgetevents_time64)
  118. /* Check if we are a 32-bit architecture with a 64-bit time_t */
  119. if (sizeof(*timeout) != sizeof(struct __timespec32)) {
  120. int ret = syscall(__NR_io_pgetevents_time64, ctx, min, max, events,
  121. timeout, NULL);
  122. if (ret == 0 || errno != ENOSYS)
  123. return ret;
  124. }
  125. #endif
  126. #if defined(__NR_io_getevents)
  127. if (sizeof(*timeout) == sizeof(struct __timespec32))
  128. /*
  129. * time_t matches our architecture length, we can just use
  130. * __NR_io_getevents
  131. */
  132. return syscall(__NR_io_getevents, ctx, min, max, events, timeout);
  133. else {
  134. /*
  135. * We don't have __NR_io_pgetevents_time64, but we are using a
  136. * 64-bit time_t on a 32-bit architecture. If we can fit the
  137. * timeout value in a 32-bit time_t, then let's do that
  138. * and then use the __NR_io_getevents syscall.
  139. */
  140. if (timeout && timeout->tv_sec == (long)timeout->tv_sec) {
  141. struct __timespec32 ts32;
  142. ts32.tv_sec = (__kernel_long_t) timeout->tv_sec;
  143. ts32.tv_nsec = (__kernel_long_t) timeout->tv_nsec;
  144. return syscall(__NR_io_getevents, ctx, min, max, events, ts32);
  145. } else {
  146. return syscall(__NR_io_getevents, ctx, min, max, events, NULL);
  147. }
  148. }
  149. #endif
  150. errno = ENOSYS;
  151. return -1;
  152. }
  153. static void afalg_waitfd_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
  154. OSSL_ASYNC_FD waitfd, void *custom)
  155. {
  156. close(waitfd);
  157. }
  158. static int afalg_setup_async_event_notification(afalg_aio *aio)
  159. {
  160. ASYNC_JOB *job;
  161. ASYNC_WAIT_CTX *waitctx;
  162. void *custom = NULL;
  163. int ret;
  164. if ((job = ASYNC_get_current_job()) != NULL) {
  165. /* Async mode */
  166. waitctx = ASYNC_get_wait_ctx(job);
  167. if (waitctx == NULL) {
  168. ALG_WARN("%s(%d): ASYNC_get_wait_ctx error", __FILE__, __LINE__);
  169. return 0;
  170. }
  171. /* Get waitfd from ASYNC_WAIT_CTX if it is already set */
  172. ret = ASYNC_WAIT_CTX_get_fd(waitctx, engine_afalg_id,
  173. &aio->efd, &custom);
  174. if (ret == 0) {
  175. /*
  176. * waitfd is not set in ASYNC_WAIT_CTX, create a new one
  177. * and set it. efd will be signaled when AIO operation completes
  178. */
  179. aio->efd = eventfd(0);
  180. if (aio->efd == -1) {
  181. ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__,
  182. __LINE__);
  183. AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
  184. AFALG_R_EVENTFD_FAILED);
  185. return 0;
  186. }
  187. ret = ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_afalg_id,
  188. aio->efd, custom,
  189. afalg_waitfd_cleanup);
  190. if (ret == 0) {
  191. ALG_WARN("%s(%d): Failed to set wait fd", __FILE__, __LINE__);
  192. close(aio->efd);
  193. return 0;
  194. }
  195. /* make fd non-blocking in async mode */
  196. if (fcntl(aio->efd, F_SETFL, O_NONBLOCK) != 0) {
  197. ALG_WARN("%s(%d): Failed to set event fd as NONBLOCKING",
  198. __FILE__, __LINE__);
  199. }
  200. }
  201. aio->mode = MODE_ASYNC;
  202. } else {
  203. /* Sync mode */
  204. aio->efd = eventfd(0);
  205. if (aio->efd == -1) {
  206. ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__, __LINE__);
  207. AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
  208. AFALG_R_EVENTFD_FAILED);
  209. return 0;
  210. }
  211. aio->mode = MODE_SYNC;
  212. }
  213. return 1;
  214. }
  215. static int afalg_init_aio(afalg_aio *aio)
  216. {
  217. int r = -1;
  218. /* Initialise for AIO */
  219. aio->aio_ctx = 0;
  220. r = io_setup(MAX_INFLIGHTS, &aio->aio_ctx);
  221. if (r < 0) {
  222. ALG_PERR("%s(%d): io_setup error : ", __FILE__, __LINE__);
  223. AFALGerr(AFALG_F_AFALG_INIT_AIO, AFALG_R_IO_SETUP_FAILED);
  224. return 0;
  225. }
  226. memset(aio->cbt, 0, sizeof(aio->cbt));
  227. aio->efd = -1;
  228. aio->mode = MODE_UNINIT;
  229. return 1;
  230. }
  231. static int afalg_fin_cipher_aio(afalg_aio *aio, int sfd, unsigned char *buf,
  232. size_t len)
  233. {
  234. int r;
  235. int retry = 0;
  236. unsigned int done = 0;
  237. struct iocb *cb;
  238. struct timespec timeout;
  239. struct io_event events[MAX_INFLIGHTS];
  240. u_int64_t eval = 0;
  241. timeout.tv_sec = 0;
  242. timeout.tv_nsec = 0;
  243. /* if efd has not been initialised yet do it here */
  244. if (aio->mode == MODE_UNINIT) {
  245. r = afalg_setup_async_event_notification(aio);
  246. if (r == 0)
  247. return 0;
  248. }
  249. cb = &(aio->cbt[0 % MAX_INFLIGHTS]);
  250. memset(cb, '\0', sizeof(*cb));
  251. cb->aio_fildes = sfd;
  252. cb->aio_lio_opcode = IOCB_CMD_PREAD;
  253. /*
  254. * The pointer has to be converted to unsigned value first to avoid
  255. * sign extension on cast to 64 bit value in 32-bit builds
  256. */
  257. cb->aio_buf = (size_t)buf;
  258. cb->aio_offset = 0;
  259. cb->aio_data = 0;
  260. cb->aio_nbytes = len;
  261. cb->aio_flags = IOCB_FLAG_RESFD;
  262. cb->aio_resfd = aio->efd;
  263. /*
  264. * Perform AIO read on AFALG socket, this in turn performs an async
  265. * crypto operation in kernel space
  266. */
  267. r = io_read(aio->aio_ctx, 1, &cb);
  268. if (r < 0) {
  269. ALG_PWARN("%s(%d): io_read failed : ", __FILE__, __LINE__);
  270. return 0;
  271. }
  272. do {
  273. /* While AIO read is being performed pause job */
  274. ASYNC_pause_job();
  275. /* Check for completion of AIO read */
  276. r = read(aio->efd, &eval, sizeof(eval));
  277. if (r < 0) {
  278. if (errno == EAGAIN || errno == EWOULDBLOCK)
  279. continue;
  280. ALG_PERR("%s(%d): read failed for event fd : ", __FILE__, __LINE__);
  281. return 0;
  282. } else if (r == 0 || eval <= 0) {
  283. ALG_WARN("%s(%d): eventfd read %d bytes, eval = %lu\n", __FILE__,
  284. __LINE__, r, eval);
  285. }
  286. if (eval > 0) {
  287. #ifdef OSSL_SANITIZE_MEMORY
  288. /*
  289. * In a memory sanitiser build, the changes to memory made by the
  290. * system call aren't reliably detected. By initialising the
  291. * memory here, the sanitiser is told that they are okay.
  292. */
  293. memset(events, 0, sizeof(events));
  294. #endif
  295. /* Get results of AIO read */
  296. r = io_getevents(aio->aio_ctx, 1, MAX_INFLIGHTS,
  297. events, &timeout);
  298. if (r > 0) {
  299. /*
  300. * events.res indicates the actual status of the operation.
  301. * Handle the error condition first.
  302. */
  303. if (events[0].res < 0) {
  304. /*
  305. * Underlying operation cannot be completed at the time
  306. * of previous submission. Resubmit for the operation.
  307. */
  308. if (events[0].res == -EBUSY && retry++ < 3) {
  309. r = io_read(aio->aio_ctx, 1, &cb);
  310. if (r < 0) {
  311. ALG_PERR("%s(%d): retry %d for io_read failed : ",
  312. __FILE__, __LINE__, retry);
  313. return 0;
  314. }
  315. continue;
  316. } else {
  317. char strbuf[32];
  318. /*
  319. * sometimes __s64 is defined as long long int
  320. * but on some archs ( like mips64 or powerpc64 ) it's just long int
  321. *
  322. * to be able to use BIO_snprintf() with %lld without warnings
  323. * copy events[0].res to an long long int variable
  324. *
  325. * because long long int should always be at least 64 bit this should work
  326. */
  327. long long int op_ret = events[0].res;
  328. /*
  329. * Retries exceed for -EBUSY or unrecoverable error
  330. * condition for this instance of operation.
  331. */
  332. ALG_WARN
  333. ("%s(%d): Crypto Operation failed with code %lld\n",
  334. __FILE__, __LINE__, events[0].res);
  335. BIO_snprintf(strbuf, sizeof(strbuf), "%lld", op_ret);
  336. switch (events[0].res) {
  337. case -ENOMEM:
  338. AFALGerr(0, AFALG_R_KERNEL_OP_FAILED);
  339. ERR_add_error_data(3, "-ENOMEM ( code ", strbuf, " )");
  340. break;
  341. default:
  342. AFALGerr(0, AFALG_R_KERNEL_OP_FAILED);
  343. ERR_add_error_data(2, "code ", strbuf);
  344. break;
  345. }
  346. return 0;
  347. }
  348. }
  349. /* Operation successful. */
  350. done = 1;
  351. } else if (r < 0) {
  352. ALG_PERR("%s(%d): io_getevents failed : ", __FILE__, __LINE__);
  353. return 0;
  354. } else {
  355. ALG_WARN("%s(%d): io_geteventd read 0 bytes\n", __FILE__,
  356. __LINE__);
  357. }
  358. }
  359. } while (!done);
  360. return 1;
  361. }
  362. static ossl_inline void afalg_set_op_sk(struct cmsghdr *cmsg,
  363. const ALG_OP_TYPE op)
  364. {
  365. cmsg->cmsg_level = SOL_ALG;
  366. cmsg->cmsg_type = ALG_SET_OP;
  367. cmsg->cmsg_len = CMSG_LEN(ALG_OP_LEN);
  368. memcpy(CMSG_DATA(cmsg), &op, ALG_OP_LEN);
  369. }
  370. static void afalg_set_iv_sk(struct cmsghdr *cmsg, const unsigned char *iv,
  371. const unsigned int len)
  372. {
  373. struct af_alg_iv *aiv;
  374. cmsg->cmsg_level = SOL_ALG;
  375. cmsg->cmsg_type = ALG_SET_IV;
  376. cmsg->cmsg_len = CMSG_LEN(ALG_IV_LEN(len));
  377. aiv = (struct af_alg_iv *)CMSG_DATA(cmsg);
  378. aiv->ivlen = len;
  379. memcpy(aiv->iv, iv, len);
  380. }
  381. static ossl_inline int afalg_set_key(afalg_ctx *actx, const unsigned char *key,
  382. const int klen)
  383. {
  384. int ret;
  385. ret = setsockopt(actx->bfd, SOL_ALG, ALG_SET_KEY, key, klen);
  386. if (ret < 0) {
  387. ALG_PERR("%s(%d): Failed to set socket option : ", __FILE__, __LINE__);
  388. AFALGerr(AFALG_F_AFALG_SET_KEY, AFALG_R_SOCKET_SET_KEY_FAILED);
  389. return 0;
  390. }
  391. return 1;
  392. }
  393. static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
  394. const char *ciphername)
  395. {
  396. struct sockaddr_alg sa;
  397. int r = -1;
  398. actx->bfd = actx->sfd = -1;
  399. memset(&sa, 0, sizeof(sa));
  400. sa.salg_family = AF_ALG;
  401. OPENSSL_strlcpy((char *) sa.salg_type, ciphertype, sizeof(sa.salg_type));
  402. OPENSSL_strlcpy((char *) sa.salg_name, ciphername, sizeof(sa.salg_name));
  403. actx->bfd = socket(AF_ALG, SOCK_SEQPACKET, 0);
  404. if (actx->bfd == -1) {
  405. ALG_PERR("%s(%d): Failed to open socket : ", __FILE__, __LINE__);
  406. AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_CREATE_FAILED);
  407. goto err;
  408. }
  409. r = bind(actx->bfd, (struct sockaddr *)&sa, sizeof(sa));
  410. if (r < 0) {
  411. ALG_PERR("%s(%d): Failed to bind socket : ", __FILE__, __LINE__);
  412. AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_BIND_FAILED);
  413. goto err;
  414. }
  415. actx->sfd = accept(actx->bfd, NULL, 0);
  416. if (actx->sfd < 0) {
  417. ALG_PERR("%s(%d): Socket Accept Failed : ", __FILE__, __LINE__);
  418. AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_ACCEPT_FAILED);
  419. goto err;
  420. }
  421. return 1;
  422. err:
  423. if (actx->bfd >= 0)
  424. close(actx->bfd);
  425. if (actx->sfd >= 0)
  426. close(actx->sfd);
  427. actx->bfd = actx->sfd = -1;
  428. return 0;
  429. }
  430. static int afalg_start_cipher_sk(afalg_ctx *actx, const unsigned char *in,
  431. size_t inl, const unsigned char *iv,
  432. unsigned int enc)
  433. {
  434. struct msghdr msg;
  435. struct cmsghdr *cmsg;
  436. struct iovec iov;
  437. ssize_t sbytes;
  438. # ifdef ALG_ZERO_COPY
  439. int ret;
  440. # endif
  441. char cbuf[CMSG_SPACE(ALG_IV_LEN(ALG_AES_IV_LEN)) + CMSG_SPACE(ALG_OP_LEN)];
  442. memset(&msg, 0, sizeof(msg));
  443. memset(cbuf, 0, sizeof(cbuf));
  444. msg.msg_control = cbuf;
  445. msg.msg_controllen = sizeof(cbuf);
  446. /*
  447. * cipher direction (i.e. encrypt or decrypt) and iv are sent to the
  448. * kernel as part of sendmsg()'s ancillary data
  449. */
  450. cmsg = CMSG_FIRSTHDR(&msg);
  451. afalg_set_op_sk(cmsg, enc);
  452. cmsg = CMSG_NXTHDR(&msg, cmsg);
  453. afalg_set_iv_sk(cmsg, iv, ALG_AES_IV_LEN);
  454. /* iov that describes input data */
  455. iov.iov_base = (unsigned char *)in;
  456. iov.iov_len = inl;
  457. msg.msg_flags = MSG_MORE;
  458. # ifdef ALG_ZERO_COPY
  459. /*
  460. * ZERO_COPY mode
  461. * Works best when buffer is 4k aligned
  462. * OPENS: out of place processing (i.e. out != in)
  463. */
  464. /* Input data is not sent as part of call to sendmsg() */
  465. msg.msg_iovlen = 0;
  466. msg.msg_iov = NULL;
  467. /* Sendmsg() sends iv and cipher direction to the kernel */
  468. sbytes = sendmsg(actx->sfd, &msg, 0);
  469. if (sbytes < 0) {
  470. ALG_PERR("%s(%d): sendmsg failed for zero copy cipher operation : ",
  471. __FILE__, __LINE__);
  472. return 0;
  473. }
  474. /*
  475. * vmsplice and splice are used to pin the user space input buffer for
  476. * kernel space processing avoiding copies from user to kernel space
  477. */
  478. ret = vmsplice(actx->zc_pipe[1], &iov, 1, SPLICE_F_GIFT);
  479. if (ret < 0) {
  480. ALG_PERR("%s(%d): vmsplice failed : ", __FILE__, __LINE__);
  481. return 0;
  482. }
  483. ret = splice(actx->zc_pipe[0], NULL, actx->sfd, NULL, inl, 0);
  484. if (ret < 0) {
  485. ALG_PERR("%s(%d): splice failed : ", __FILE__, __LINE__);
  486. return 0;
  487. }
  488. # else
  489. msg.msg_iovlen = 1;
  490. msg.msg_iov = &iov;
  491. /* Sendmsg() sends iv, cipher direction and input data to the kernel */
  492. sbytes = sendmsg(actx->sfd, &msg, 0);
  493. if (sbytes < 0) {
  494. ALG_PERR("%s(%d): sendmsg failed for cipher operation : ", __FILE__,
  495. __LINE__);
  496. return 0;
  497. }
  498. if (sbytes != (ssize_t) inl) {
  499. ALG_WARN("Cipher operation send bytes %zd != inlen %zd\n", sbytes,
  500. inl);
  501. return 0;
  502. }
  503. # endif
  504. return 1;
  505. }
  506. static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  507. const unsigned char *iv, int enc)
  508. {
  509. int ciphertype;
  510. int ret, len;
  511. afalg_ctx *actx;
  512. const char *ciphername;
  513. if (ctx == NULL || key == NULL) {
  514. ALG_WARN("%s(%d): Null Parameter\n", __FILE__, __LINE__);
  515. return 0;
  516. }
  517. if (EVP_CIPHER_CTX_get0_cipher(ctx) == NULL) {
  518. ALG_WARN("%s(%d): Cipher object NULL\n", __FILE__, __LINE__);
  519. return 0;
  520. }
  521. actx = EVP_CIPHER_CTX_get_cipher_data(ctx);
  522. if (actx == NULL) {
  523. ALG_WARN("%s(%d): Cipher data NULL\n", __FILE__, __LINE__);
  524. return 0;
  525. }
  526. ciphertype = EVP_CIPHER_CTX_get_nid(ctx);
  527. switch (ciphertype) {
  528. case NID_aes_128_cbc:
  529. case NID_aes_192_cbc:
  530. case NID_aes_256_cbc:
  531. ciphername = "cbc(aes)";
  532. break;
  533. default:
  534. ALG_WARN("%s(%d): Unsupported Cipher type %d\n", __FILE__, __LINE__,
  535. ciphertype);
  536. return 0;
  537. }
  538. if (ALG_AES_IV_LEN != EVP_CIPHER_CTX_get_iv_length(ctx)) {
  539. ALG_WARN("%s(%d): Unsupported IV length :%d\n", __FILE__, __LINE__,
  540. EVP_CIPHER_CTX_get_iv_length(ctx));
  541. return 0;
  542. }
  543. /* Setup AFALG socket for crypto processing */
  544. ret = afalg_create_sk(actx, "skcipher", ciphername);
  545. if (ret < 1)
  546. return 0;
  547. if ((len = EVP_CIPHER_CTX_get_key_length(ctx)) <= 0)
  548. goto err;
  549. ret = afalg_set_key(actx, key, len);
  550. if (ret < 1)
  551. goto err;
  552. /* Setup AIO ctx to allow async AFALG crypto processing */
  553. if (afalg_init_aio(&actx->aio) == 0)
  554. goto err;
  555. # ifdef ALG_ZERO_COPY
  556. pipe(actx->zc_pipe);
  557. # endif
  558. actx->init_done = MAGIC_INIT_NUM;
  559. return 1;
  560. err:
  561. close(actx->sfd);
  562. close(actx->bfd);
  563. return 0;
  564. }
  565. static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  566. const unsigned char *in, size_t inl)
  567. {
  568. afalg_ctx *actx;
  569. int ret;
  570. char nxtiv[ALG_AES_IV_LEN] = { 0 };
  571. if (ctx == NULL || out == NULL || in == NULL) {
  572. ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
  573. __LINE__);
  574. return 0;
  575. }
  576. actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
  577. if (actx == NULL || actx->init_done != MAGIC_INIT_NUM) {
  578. ALG_WARN("%s afalg ctx passed\n",
  579. ctx == NULL ? "NULL" : "Uninitialised");
  580. return 0;
  581. }
  582. /*
  583. * set iv now for decrypt operation as the input buffer can be
  584. * overwritten for inplace operation where in = out.
  585. */
  586. if (EVP_CIPHER_CTX_is_encrypting(ctx) == 0) {
  587. memcpy(nxtiv, in + (inl - ALG_AES_IV_LEN), ALG_AES_IV_LEN);
  588. }
  589. /* Send input data to kernel space */
  590. ret = afalg_start_cipher_sk(actx, (unsigned char *)in, inl,
  591. EVP_CIPHER_CTX_iv(ctx),
  592. EVP_CIPHER_CTX_is_encrypting(ctx));
  593. if (ret < 1) {
  594. return 0;
  595. }
  596. /* Perform async crypto operation in kernel space */
  597. ret = afalg_fin_cipher_aio(&actx->aio, actx->sfd, out, inl);
  598. if (ret < 1)
  599. return 0;
  600. if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
  601. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), out + (inl - ALG_AES_IV_LEN),
  602. ALG_AES_IV_LEN);
  603. } else {
  604. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), nxtiv, ALG_AES_IV_LEN);
  605. }
  606. return 1;
  607. }
  608. static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx)
  609. {
  610. afalg_ctx *actx;
  611. if (ctx == NULL) {
  612. ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
  613. __LINE__);
  614. return 0;
  615. }
  616. actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
  617. if (actx == NULL || actx->init_done != MAGIC_INIT_NUM)
  618. return 1;
  619. close(actx->sfd);
  620. close(actx->bfd);
  621. # ifdef ALG_ZERO_COPY
  622. close(actx->zc_pipe[0]);
  623. close(actx->zc_pipe[1]);
  624. # endif
  625. /* close efd in sync mode, async mode is closed in afalg_waitfd_cleanup() */
  626. if (actx->aio.mode == MODE_SYNC)
  627. close(actx->aio.efd);
  628. io_destroy(actx->aio.aio_ctx);
  629. return 1;
  630. }
  631. static cbc_handles *get_cipher_handle(int nid)
  632. {
  633. switch (nid) {
  634. case NID_aes_128_cbc:
  635. return &cbc_handle[AES_CBC_128];
  636. case NID_aes_192_cbc:
  637. return &cbc_handle[AES_CBC_192];
  638. case NID_aes_256_cbc:
  639. return &cbc_handle[AES_CBC_256];
  640. default:
  641. return NULL;
  642. }
  643. }
  644. static const EVP_CIPHER *afalg_aes_cbc(int nid)
  645. {
  646. cbc_handles *cipher_handle = get_cipher_handle(nid);
  647. if (cipher_handle == NULL)
  648. return NULL;
  649. if (cipher_handle->_hidden == NULL
  650. && ((cipher_handle->_hidden =
  651. EVP_CIPHER_meth_new(nid,
  652. AES_BLOCK_SIZE,
  653. cipher_handle->key_size)) == NULL
  654. || !EVP_CIPHER_meth_set_iv_length(cipher_handle->_hidden,
  655. AES_IV_LEN)
  656. || !EVP_CIPHER_meth_set_flags(cipher_handle->_hidden,
  657. EVP_CIPH_CBC_MODE |
  658. EVP_CIPH_FLAG_DEFAULT_ASN1)
  659. || !EVP_CIPHER_meth_set_init(cipher_handle->_hidden,
  660. afalg_cipher_init)
  661. || !EVP_CIPHER_meth_set_do_cipher(cipher_handle->_hidden,
  662. afalg_do_cipher)
  663. || !EVP_CIPHER_meth_set_cleanup(cipher_handle->_hidden,
  664. afalg_cipher_cleanup)
  665. || !EVP_CIPHER_meth_set_impl_ctx_size(cipher_handle->_hidden,
  666. sizeof(afalg_ctx)))) {
  667. EVP_CIPHER_meth_free(cipher_handle->_hidden);
  668. cipher_handle->_hidden= NULL;
  669. }
  670. return cipher_handle->_hidden;
  671. }
  672. static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
  673. const int **nids, int nid)
  674. {
  675. int r = 1;
  676. if (cipher == NULL) {
  677. *nids = afalg_cipher_nids;
  678. return (sizeof(afalg_cipher_nids) / sizeof(afalg_cipher_nids[0]));
  679. }
  680. switch (nid) {
  681. case NID_aes_128_cbc:
  682. case NID_aes_192_cbc:
  683. case NID_aes_256_cbc:
  684. *cipher = afalg_aes_cbc(nid);
  685. break;
  686. default:
  687. *cipher = NULL;
  688. r = 0;
  689. }
  690. return r;
  691. }
  692. static int bind_afalg(ENGINE *e)
  693. {
  694. /* Ensure the afalg error handling is set up */
  695. unsigned short i;
  696. ERR_load_AFALG_strings();
  697. if (!ENGINE_set_id(e, engine_afalg_id)
  698. || !ENGINE_set_name(e, engine_afalg_name)
  699. || !ENGINE_set_destroy_function(e, afalg_destroy)
  700. || !ENGINE_set_init_function(e, afalg_init)
  701. || !ENGINE_set_finish_function(e, afalg_finish)) {
  702. AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
  703. return 0;
  704. }
  705. /*
  706. * Create _hidden_aes_xxx_cbc by calling afalg_aes_xxx_cbc
  707. * now, as bind_aflag can only be called by one thread at a
  708. * time.
  709. */
  710. for (i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
  711. if (afalg_aes_cbc(afalg_cipher_nids[i]) == NULL) {
  712. AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
  713. return 0;
  714. }
  715. }
  716. if (!ENGINE_set_ciphers(e, afalg_ciphers)) {
  717. AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
  718. return 0;
  719. }
  720. return 1;
  721. }
  722. # ifndef OPENSSL_NO_DYNAMIC_ENGINE
  723. static int bind_helper(ENGINE *e, const char *id)
  724. {
  725. if (id && (strcmp(id, engine_afalg_id) != 0))
  726. return 0;
  727. if (!afalg_chk_platform())
  728. return 0;
  729. if (!bind_afalg(e))
  730. return 0;
  731. return 1;
  732. }
  733. IMPLEMENT_DYNAMIC_CHECK_FN()
  734. IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
  735. # endif
  736. static int afalg_chk_platform(void)
  737. {
  738. int ret;
  739. int i;
  740. int kver[3] = { -1, -1, -1 };
  741. int sock;
  742. char *str;
  743. struct utsname ut;
  744. ret = uname(&ut);
  745. if (ret != 0) {
  746. AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
  747. AFALG_R_FAILED_TO_GET_PLATFORM_INFO);
  748. return 0;
  749. }
  750. str = strtok(ut.release, ".");
  751. for (i = 0; i < 3 && str != NULL; i++) {
  752. kver[i] = atoi(str);
  753. str = strtok(NULL, ".");
  754. }
  755. if (KERNEL_VERSION(kver[0], kver[1], kver[2])
  756. < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2)) {
  757. ALG_ERR("ASYNC AFALG not supported this kernel(%d.%d.%d)\n",
  758. kver[0], kver[1], kver[2]);
  759. ALG_ERR("ASYNC AFALG requires kernel version %d.%d.%d or later\n",
  760. K_MAJ, K_MIN1, K_MIN2);
  761. AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
  762. AFALG_R_KERNEL_DOES_NOT_SUPPORT_ASYNC_AFALG);
  763. return 0;
  764. }
  765. /* Test if we can actually create an AF_ALG socket */
  766. sock = socket(AF_ALG, SOCK_SEQPACKET, 0);
  767. if (sock == -1) {
  768. AFALGerr(AFALG_F_AFALG_CHK_PLATFORM, AFALG_R_SOCKET_CREATE_FAILED);
  769. return 0;
  770. }
  771. close(sock);
  772. return 1;
  773. }
  774. # ifdef OPENSSL_NO_DYNAMIC_ENGINE
  775. static ENGINE *engine_afalg(void)
  776. {
  777. ENGINE *ret = ENGINE_new();
  778. if (ret == NULL)
  779. return NULL;
  780. if (!bind_afalg(ret)) {
  781. ENGINE_free(ret);
  782. return NULL;
  783. }
  784. return ret;
  785. }
  786. void engine_load_afalg_int(void)
  787. {
  788. ENGINE *toadd;
  789. if (!afalg_chk_platform())
  790. return;
  791. toadd = engine_afalg();
  792. if (toadd == NULL)
  793. return;
  794. ERR_set_mark();
  795. ENGINE_add(toadd);
  796. /*
  797. * If the "add" worked, it gets a structural reference. So either way, we
  798. * release our just-created reference.
  799. */
  800. ENGINE_free(toadd);
  801. /*
  802. * If the "add" didn't work, it was probably a conflict because it was
  803. * already added (eg. someone calling ENGINE_load_blah then calling
  804. * ENGINE_load_builtin_engines() perhaps).
  805. */
  806. ERR_pop_to_mark();
  807. }
  808. # endif
  809. static int afalg_init(ENGINE *e)
  810. {
  811. return 1;
  812. }
  813. static int afalg_finish(ENGINE *e)
  814. {
  815. return 1;
  816. }
  817. static int free_cbc(void)
  818. {
  819. short unsigned int i;
  820. for (i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
  821. EVP_CIPHER_meth_free(cbc_handle[i]._hidden);
  822. cbc_handle[i]._hidden = NULL;
  823. }
  824. return 1;
  825. }
  826. static int afalg_destroy(ENGINE *e)
  827. {
  828. ERR_unload_AFALG_strings();
  829. free_cbc();
  830. return 1;
  831. }
  832. #endif /* KERNEL VERSION */