123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- /*
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include "internal/cryptlib.h"
- #include "bn_lcl.h"
- /* r must not be a */
- /*
- * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
- */
- int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
- {
- int ret = bn_sqr_fixed_top(r, a, ctx);
- bn_correct_top(r);
- bn_check_top(r);
- return ret;
- }
- int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
- {
- int max, al;
- int ret = 0;
- BIGNUM *tmp, *rr;
- bn_check_top(a);
- al = a->top;
- if (al <= 0) {
- r->top = 0;
- r->neg = 0;
- return 1;
- }
- BN_CTX_start(ctx);
- rr = (a != r) ? r : BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- if (rr == NULL || tmp == NULL)
- goto err;
- max = 2 * al; /* Non-zero (from above) */
- if (bn_wexpand(rr, max) == NULL)
- goto err;
- if (al == 4) {
- #ifndef BN_SQR_COMBA
- BN_ULONG t[8];
- bn_sqr_normal(rr->d, a->d, 4, t);
- #else
- bn_sqr_comba4(rr->d, a->d);
- #endif
- } else if (al == 8) {
- #ifndef BN_SQR_COMBA
- BN_ULONG t[16];
- bn_sqr_normal(rr->d, a->d, 8, t);
- #else
- bn_sqr_comba8(rr->d, a->d);
- #endif
- } else {
- #if defined(BN_RECURSION)
- if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
- BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
- bn_sqr_normal(rr->d, a->d, al, t);
- } else {
- int j, k;
- j = BN_num_bits_word((BN_ULONG)al);
- j = 1 << (j - 1);
- k = j + j;
- if (al == j) {
- if (bn_wexpand(tmp, k * 2) == NULL)
- goto err;
- bn_sqr_recursive(rr->d, a->d, al, tmp->d);
- } else {
- if (bn_wexpand(tmp, max) == NULL)
- goto err;
- bn_sqr_normal(rr->d, a->d, al, tmp->d);
- }
- }
- #else
- if (bn_wexpand(tmp, max) == NULL)
- goto err;
- bn_sqr_normal(rr->d, a->d, al, tmp->d);
- #endif
- }
- rr->neg = 0;
- rr->top = max;
- rr->flags |= BN_FLG_FIXED_TOP;
- if (r != rr && BN_copy(r, rr) == NULL)
- goto err;
- ret = 1;
- err:
- bn_check_top(rr);
- bn_check_top(tmp);
- BN_CTX_end(ctx);
- return ret;
- }
- /* tmp must have 2*n words */
- void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
- {
- int i, j, max;
- const BN_ULONG *ap;
- BN_ULONG *rp;
- max = n * 2;
- ap = a;
- rp = r;
- rp[0] = rp[max - 1] = 0;
- rp++;
- j = n;
- if (--j > 0) {
- ap++;
- rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
- rp += 2;
- }
- for (i = n - 2; i > 0; i--) {
- j--;
- ap++;
- rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
- rp += 2;
- }
- bn_add_words(r, r, r, max);
- /* There will not be a carry */
- bn_sqr_words(tmp, a, n);
- bn_add_words(r, r, tmp, max);
- }
- #ifdef BN_RECURSION
- /*-
- * r is 2*n words in size,
- * a and b are both n words in size. (There's not actually a 'b' here ...)
- * n must be a power of 2.
- * We multiply and return the result.
- * t must be 2*n words in size
- * We calculate
- * a[0]*b[0]
- * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
- * a[1]*b[1]
- */
- void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
- {
- int n = n2 / 2;
- int zero, c1;
- BN_ULONG ln, lo, *p;
- if (n2 == 4) {
- # ifndef BN_SQR_COMBA
- bn_sqr_normal(r, a, 4, t);
- # else
- bn_sqr_comba4(r, a);
- # endif
- return;
- } else if (n2 == 8) {
- # ifndef BN_SQR_COMBA
- bn_sqr_normal(r, a, 8, t);
- # else
- bn_sqr_comba8(r, a);
- # endif
- return;
- }
- if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
- bn_sqr_normal(r, a, n2, t);
- return;
- }
- /* r=(a[0]-a[1])*(a[1]-a[0]) */
- c1 = bn_cmp_words(a, &(a[n]), n);
- zero = 0;
- if (c1 > 0)
- bn_sub_words(t, a, &(a[n]), n);
- else if (c1 < 0)
- bn_sub_words(t, &(a[n]), a, n);
- else
- zero = 1;
- /* The result will always be negative unless it is zero */
- p = &(t[n2 * 2]);
- if (!zero)
- bn_sqr_recursive(&(t[n2]), t, n, p);
- else
- memset(&t[n2], 0, sizeof(*t) * n2);
- bn_sqr_recursive(r, a, n, p);
- bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
- /*-
- * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
- /* t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- /*-
- * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
- * r[10] holds (a[0]*a[0])
- * r[32] holds (a[1]*a[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
- }
- #endif
|