123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606 |
- /*
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <stdio.h>
- #include <openssl/crypto.h>
- #include "internal/cryptlib.h"
- #include "internal/refcount.h"
- #include "internal/bn_int.h"
- #include <openssl/engine.h>
- #include <openssl/evp.h>
- #include "internal/evp_int.h"
- #include "rsa_locl.h"
- RSA *RSA_new(void)
- {
- return RSA_new_method(NULL);
- }
- const RSA_METHOD *RSA_get_method(const RSA *rsa)
- {
- return rsa->meth;
- }
- int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
- {
- /*
- * NB: The caller is specifically setting a method, so it's not up to us
- * to deal with which ENGINE it comes from.
- */
- const RSA_METHOD *mtmp;
- mtmp = rsa->meth;
- if (mtmp->finish)
- mtmp->finish(rsa);
- #ifndef OPENSSL_NO_ENGINE
- ENGINE_finish(rsa->engine);
- rsa->engine = NULL;
- #endif
- rsa->meth = meth;
- if (meth->init)
- meth->init(rsa);
- return 1;
- }
- RSA *RSA_new_method(ENGINE *engine)
- {
- RSA *ret = OPENSSL_zalloc(sizeof(*ret));
- if (ret == NULL) {
- RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE);
- return NULL;
- }
- ret->references = 1;
- ret->lock = CRYPTO_THREAD_lock_new();
- if (ret->lock == NULL) {
- RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(ret);
- return NULL;
- }
- ret->meth = RSA_get_default_method();
- #ifndef OPENSSL_NO_ENGINE
- ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
- if (engine) {
- if (!ENGINE_init(engine)) {
- RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
- goto err;
- }
- ret->engine = engine;
- } else {
- ret->engine = ENGINE_get_default_RSA();
- }
- if (ret->engine) {
- ret->meth = ENGINE_get_RSA(ret->engine);
- if (ret->meth == NULL) {
- RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
- goto err;
- }
- }
- #endif
- ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
- if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
- goto err;
- }
- if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
- RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_INIT_FAIL);
- goto err;
- }
- return ret;
- err:
- RSA_free(ret);
- return NULL;
- }
- void RSA_free(RSA *r)
- {
- int i;
- if (r == NULL)
- return;
- CRYPTO_DOWN_REF(&r->references, &i, r->lock);
- REF_PRINT_COUNT("RSA", r);
- if (i > 0)
- return;
- REF_ASSERT_ISNT(i < 0);
- if (r->meth != NULL && r->meth->finish != NULL)
- r->meth->finish(r);
- #ifndef OPENSSL_NO_ENGINE
- ENGINE_finish(r->engine);
- #endif
- CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
- CRYPTO_THREAD_lock_free(r->lock);
- BN_free(r->n);
- BN_free(r->e);
- BN_clear_free(r->d);
- BN_clear_free(r->p);
- BN_clear_free(r->q);
- BN_clear_free(r->dmp1);
- BN_clear_free(r->dmq1);
- BN_clear_free(r->iqmp);
- RSA_PSS_PARAMS_free(r->pss);
- sk_RSA_PRIME_INFO_pop_free(r->prime_infos, rsa_multip_info_free);
- BN_BLINDING_free(r->blinding);
- BN_BLINDING_free(r->mt_blinding);
- OPENSSL_free(r->bignum_data);
- OPENSSL_free(r);
- }
- int RSA_up_ref(RSA *r)
- {
- int i;
- if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
- return 0;
- REF_PRINT_COUNT("RSA", r);
- REF_ASSERT_ISNT(i < 2);
- return i > 1 ? 1 : 0;
- }
- int RSA_set_ex_data(RSA *r, int idx, void *arg)
- {
- return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
- }
- void *RSA_get_ex_data(const RSA *r, int idx)
- {
- return CRYPTO_get_ex_data(&r->ex_data, idx);
- }
- /*
- * Define a scaling constant for our fixed point arithmetic.
- * This value must be a power of two because the base two logarithm code
- * makes this assumption. The exponent must also be a multiple of three so
- * that the scale factor has an exact cube root. Finally, the scale factor
- * should not be so large that a multiplication of two scaled numbers
- * overflows a 64 bit unsigned integer.
- */
- static const unsigned int scale = 1 << 18;
- static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
- /* Define some constants, none exceed 32 bits */
- static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
- static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
- static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
- static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
- /*
- * Multiply two scale integers together and rescale the result.
- */
- static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
- {
- return a * b / scale;
- }
- /*
- * Calculate the cube root of a 64 bit scaled integer.
- * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
- * integer, this is not guaranteed after scaling, so this function has a
- * 64 bit return. This uses the shifting nth root algorithm with some
- * algebraic simplifications.
- */
- static uint64_t icbrt64(uint64_t x)
- {
- uint64_t r = 0;
- uint64_t b;
- int s;
- for (s = 63; s >= 0; s -= 3) {
- r <<= 1;
- b = 3 * r * (r + 1) + 1;
- if ((x >> s) >= b) {
- x -= b << s;
- r++;
- }
- }
- return r * cbrt_scale;
- }
- /*
- * Calculate the natural logarithm of a 64 bit scaled integer.
- * This is done by calculating a base two logarithm and scaling.
- * The maximum logarithm (base 2) is 64 and this reduces base e, so
- * a 32 bit result should not overflow. The argument passed must be
- * greater than unity so we don't need to handle negative results.
- */
- static uint32_t ilog_e(uint64_t v)
- {
- uint32_t i, r = 0;
- /*
- * Scale down the value into the range 1 .. 2.
- *
- * If fractional numbers need to be processed, another loop needs
- * to go here that checks v < scale and if so multiplies it by 2 and
- * reduces r by scale. This also means making r signed.
- */
- while (v >= 2 * scale) {
- v >>= 1;
- r += scale;
- }
- for (i = scale / 2; i != 0; i /= 2) {
- v = mul2(v, v);
- if (v >= 2 * scale) {
- v >>= 1;
- r += i;
- }
- }
- r = (r * (uint64_t)scale) / log_e;
- return r;
- }
- /*
- * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
- * Modulus Lengths.
- *
- * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
- * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
- * The two cube roots are merged together here.
- */
- static uint16_t rsa_compute_security_bits(int n)
- {
- uint64_t x;
- uint32_t lx;
- uint16_t y;
- /* Look for common values as listed in SP 800-56B rev 2 Appendix D */
- switch (n) {
- case 2048:
- return 112;
- case 3072:
- return 128;
- case 4096:
- return 152;
- case 6144:
- return 176;
- case 8192:
- return 200;
- }
- /*
- * The first incorrect result (i.e. not accurate or off by one low) occurs
- * for n = 699668. The true value here is 1200. Instead of using this n
- * as the check threshold, the smallest n such that the correct result is
- * 1200 is used instead.
- */
- if (n >= 687737)
- return 1200;
- if (n < 8)
- return 0;
- x = n * (uint64_t)log_2;
- lx = ilog_e(x);
- y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
- / log_2);
- return (y + 4) & ~7;
- }
- int RSA_security_bits(const RSA *rsa)
- {
- int bits = BN_num_bits(rsa->n);
- if (rsa->version == RSA_ASN1_VERSION_MULTI) {
- /* This ought to mean that we have private key at hand. */
- int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
- if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits))
- return 0;
- }
- return rsa_compute_security_bits(bits);
- }
- int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
- {
- /* If the fields n and e in r are NULL, the corresponding input
- * parameters MUST be non-NULL for n and e. d may be
- * left NULL (in case only the public key is used).
- */
- if ((r->n == NULL && n == NULL)
- || (r->e == NULL && e == NULL))
- return 0;
- if (n != NULL) {
- BN_free(r->n);
- r->n = n;
- }
- if (e != NULL) {
- BN_free(r->e);
- r->e = e;
- }
- if (d != NULL) {
- BN_clear_free(r->d);
- r->d = d;
- }
- return 1;
- }
- int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
- {
- /* If the fields p and q in r are NULL, the corresponding input
- * parameters MUST be non-NULL.
- */
- if ((r->p == NULL && p == NULL)
- || (r->q == NULL && q == NULL))
- return 0;
- if (p != NULL) {
- BN_clear_free(r->p);
- r->p = p;
- }
- if (q != NULL) {
- BN_clear_free(r->q);
- r->q = q;
- }
- return 1;
- }
- int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
- {
- /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
- * parameters MUST be non-NULL.
- */
- if ((r->dmp1 == NULL && dmp1 == NULL)
- || (r->dmq1 == NULL && dmq1 == NULL)
- || (r->iqmp == NULL && iqmp == NULL))
- return 0;
- if (dmp1 != NULL) {
- BN_clear_free(r->dmp1);
- r->dmp1 = dmp1;
- }
- if (dmq1 != NULL) {
- BN_clear_free(r->dmq1);
- r->dmq1 = dmq1;
- }
- if (iqmp != NULL) {
- BN_clear_free(r->iqmp);
- r->iqmp = iqmp;
- }
- return 1;
- }
- /*
- * Is it better to export RSA_PRIME_INFO structure
- * and related functions to let user pass a triplet?
- */
- int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
- BIGNUM *coeffs[], int pnum)
- {
- STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
- RSA_PRIME_INFO *pinfo;
- int i;
- if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
- return 0;
- prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
- if (prime_infos == NULL)
- return 0;
- if (r->prime_infos != NULL)
- old = r->prime_infos;
- for (i = 0; i < pnum; i++) {
- pinfo = rsa_multip_info_new();
- if (pinfo == NULL)
- goto err;
- if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
- BN_free(pinfo->r);
- BN_free(pinfo->d);
- BN_free(pinfo->t);
- pinfo->r = primes[i];
- pinfo->d = exps[i];
- pinfo->t = coeffs[i];
- } else {
- rsa_multip_info_free(pinfo);
- goto err;
- }
- (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
- }
- r->prime_infos = prime_infos;
- if (!rsa_multip_calc_product(r)) {
- r->prime_infos = old;
- goto err;
- }
- if (old != NULL) {
- /*
- * This is hard to deal with, since the old infos could
- * also be set by this function and r, d, t should not
- * be freed in that case. So currently, stay consistent
- * with other *set0* functions: just free it...
- */
- sk_RSA_PRIME_INFO_pop_free(old, rsa_multip_info_free);
- }
- r->version = RSA_ASN1_VERSION_MULTI;
- return 1;
- err:
- /* r, d, t should not be freed */
- sk_RSA_PRIME_INFO_pop_free(prime_infos, rsa_multip_info_free_ex);
- return 0;
- }
- void RSA_get0_key(const RSA *r,
- const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
- {
- if (n != NULL)
- *n = r->n;
- if (e != NULL)
- *e = r->e;
- if (d != NULL)
- *d = r->d;
- }
- void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
- {
- if (p != NULL)
- *p = r->p;
- if (q != NULL)
- *q = r->q;
- }
- int RSA_get_multi_prime_extra_count(const RSA *r)
- {
- int pnum;
- pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
- if (pnum <= 0)
- pnum = 0;
- return pnum;
- }
- int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
- {
- int pnum, i;
- RSA_PRIME_INFO *pinfo;
- if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
- return 0;
- /*
- * return other primes
- * it's caller's responsibility to allocate oth_primes[pnum]
- */
- for (i = 0; i < pnum; i++) {
- pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
- primes[i] = pinfo->r;
- }
- return 1;
- }
- void RSA_get0_crt_params(const RSA *r,
- const BIGNUM **dmp1, const BIGNUM **dmq1,
- const BIGNUM **iqmp)
- {
- if (dmp1 != NULL)
- *dmp1 = r->dmp1;
- if (dmq1 != NULL)
- *dmq1 = r->dmq1;
- if (iqmp != NULL)
- *iqmp = r->iqmp;
- }
- int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
- const BIGNUM *coeffs[])
- {
- int pnum;
- if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
- return 0;
- /* return other primes */
- if (exps != NULL || coeffs != NULL) {
- RSA_PRIME_INFO *pinfo;
- int i;
- /* it's the user's job to guarantee the buffer length */
- for (i = 0; i < pnum; i++) {
- pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
- if (exps != NULL)
- exps[i] = pinfo->d;
- if (coeffs != NULL)
- coeffs[i] = pinfo->t;
- }
- }
- return 1;
- }
- const BIGNUM *RSA_get0_n(const RSA *r)
- {
- return r->n;
- }
- const BIGNUM *RSA_get0_e(const RSA *r)
- {
- return r->e;
- }
- const BIGNUM *RSA_get0_d(const RSA *r)
- {
- return r->d;
- }
- const BIGNUM *RSA_get0_p(const RSA *r)
- {
- return r->p;
- }
- const BIGNUM *RSA_get0_q(const RSA *r)
- {
- return r->q;
- }
- const BIGNUM *RSA_get0_dmp1(const RSA *r)
- {
- return r->dmp1;
- }
- const BIGNUM *RSA_get0_dmq1(const RSA *r)
- {
- return r->dmq1;
- }
- const BIGNUM *RSA_get0_iqmp(const RSA *r)
- {
- return r->iqmp;
- }
- void RSA_clear_flags(RSA *r, int flags)
- {
- r->flags &= ~flags;
- }
- int RSA_test_flags(const RSA *r, int flags)
- {
- return r->flags & flags;
- }
- void RSA_set_flags(RSA *r, int flags)
- {
- r->flags |= flags;
- }
- int RSA_get_version(RSA *r)
- {
- /* { two-prime(0), multi(1) } */
- return r->version;
- }
- ENGINE *RSA_get0_engine(const RSA *r)
- {
- return r->engine;
- }
- int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
- {
- /* If key type not RSA or RSA-PSS return error */
- if (ctx != NULL && ctx->pmeth != NULL
- && ctx->pmeth->pkey_id != EVP_PKEY_RSA
- && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
- return -1;
- return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
- }
|