123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467 |
- /*
- * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * Details about Montgomery multiplication algorithms can be found at
- * http://security.ece.orst.edu/publications.html, e.g.
- * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
- * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
- */
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- #define MONT_WORD /* use the faster word-based algorithm */
- #ifdef MONT_WORD
- static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
- #endif
- int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- BN_MONT_CTX *mont, BN_CTX *ctx)
- {
- int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);
- bn_correct_top(r);
- bn_check_top(r);
- return ret;
- }
- int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
- BN_MONT_CTX *mont, BN_CTX *ctx)
- {
- BIGNUM *tmp;
- int ret = 0;
- int num = mont->N.top;
- #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
- if (num > 1 && a->top == num && b->top == num) {
- if (bn_wexpand(r, num) == NULL)
- return 0;
- if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
- r->neg = a->neg ^ b->neg;
- r->top = num;
- r->flags |= BN_FLG_FIXED_TOP;
- return 1;
- }
- }
- #endif
- if ((a->top + b->top) > 2 * num)
- return 0;
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- if (tmp == NULL)
- goto err;
- bn_check_top(tmp);
- if (a == b) {
- if (!bn_sqr_fixed_top(tmp, a, ctx))
- goto err;
- } else {
- if (!bn_mul_fixed_top(tmp, a, b, ctx))
- goto err;
- }
- /* reduce from aRR to aR */
- #ifdef MONT_WORD
- if (!bn_from_montgomery_word(r, tmp, mont))
- goto err;
- #else
- if (!BN_from_montgomery(r, tmp, mont, ctx))
- goto err;
- #endif
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- #ifdef MONT_WORD
- static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
- {
- BIGNUM *n;
- BN_ULONG *ap, *np, *rp, n0, v, carry;
- int nl, max, i;
- unsigned int rtop;
- n = &(mont->N);
- nl = n->top;
- if (nl == 0) {
- ret->top = 0;
- return 1;
- }
- max = (2 * nl); /* carry is stored separately */
- if (bn_wexpand(r, max) == NULL)
- return 0;
- r->neg ^= n->neg;
- np = n->d;
- rp = r->d;
- /* clear the top words of T */
- for (rtop = r->top, i = 0; i < max; i++) {
- v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1));
- rp[i] &= v;
- }
- r->top = max;
- r->flags |= BN_FLG_FIXED_TOP;
- n0 = mont->n0[0];
- /*
- * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
- * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
- * includes |carry| which is stored separately.
- */
- for (carry = 0, i = 0; i < nl; i++, rp++) {
- v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2);
- v = (v + carry + rp[nl]) & BN_MASK2;
- carry |= (v != rp[nl]);
- carry &= (v <= rp[nl]);
- rp[nl] = v;
- }
- if (bn_wexpand(ret, nl) == NULL)
- return 0;
- ret->top = nl;
- ret->flags |= BN_FLG_FIXED_TOP;
- ret->neg = r->neg;
- rp = ret->d;
- /*
- * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap|
- * includes |carry| which is stored separately.
- */
- ap = &(r->d[nl]);
- carry -= bn_sub_words(rp, ap, np, nl);
- /*
- * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note
- * |carry| cannot be 1. That would imply the subtraction did not fit in
- * |nl| words, and we know at most one subtraction is needed.
- */
- for (i = 0; i < nl; i++) {
- rp[i] = (carry & ap[i]) | (~carry & rp[i]);
- ap[i] = 0;
- }
- return 1;
- }
- #endif /* MONT_WORD */
- int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
- BN_CTX *ctx)
- {
- int retn;
- retn = bn_from_mont_fixed_top(ret, a, mont, ctx);
- bn_correct_top(ret);
- bn_check_top(ret);
- return retn;
- }
- int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
- BN_CTX *ctx)
- {
- int retn = 0;
- #ifdef MONT_WORD
- BIGNUM *t;
- BN_CTX_start(ctx);
- if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) {
- retn = bn_from_montgomery_word(ret, t, mont);
- }
- BN_CTX_end(ctx);
- #else /* !MONT_WORD */
- BIGNUM *t1, *t2;
- BN_CTX_start(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- if (t2 == NULL)
- goto err;
- if (!BN_copy(t1, a))
- goto err;
- BN_mask_bits(t1, mont->ri);
- if (!BN_mul(t2, t1, &mont->Ni, ctx))
- goto err;
- BN_mask_bits(t2, mont->ri);
- if (!BN_mul(t1, t2, &mont->N, ctx))
- goto err;
- if (!BN_add(t2, a, t1))
- goto err;
- if (!BN_rshift(ret, t2, mont->ri))
- goto err;
- if (BN_ucmp(ret, &(mont->N)) >= 0) {
- if (!BN_usub(ret, ret, &(mont->N)))
- goto err;
- }
- retn = 1;
- bn_check_top(ret);
- err:
- BN_CTX_end(ctx);
- #endif /* MONT_WORD */
- return retn;
- }
- int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
- BN_CTX *ctx)
- {
- return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
- }
- BN_MONT_CTX *BN_MONT_CTX_new(void)
- {
- BN_MONT_CTX *ret;
- if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
- return NULL;
- BN_MONT_CTX_init(ret);
- ret->flags = BN_FLG_MALLOCED;
- return ret;
- }
- void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
- {
- ctx->ri = 0;
- bn_init(&ctx->RR);
- bn_init(&ctx->N);
- bn_init(&ctx->Ni);
- ctx->n0[0] = ctx->n0[1] = 0;
- ctx->flags = 0;
- }
- void BN_MONT_CTX_free(BN_MONT_CTX *mont)
- {
- if (mont == NULL)
- return;
- BN_clear_free(&mont->RR);
- BN_clear_free(&mont->N);
- BN_clear_free(&mont->Ni);
- if (mont->flags & BN_FLG_MALLOCED)
- OPENSSL_free(mont);
- }
- int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
- {
- int i, ret = 0;
- BIGNUM *Ri, *R;
- if (BN_is_zero(mod))
- return 0;
- BN_CTX_start(ctx);
- if ((Ri = BN_CTX_get(ctx)) == NULL)
- goto err;
- R = &(mont->RR); /* grab RR as a temp */
- if (!BN_copy(&(mont->N), mod))
- goto err; /* Set N */
- if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
- BN_set_flags(&(mont->N), BN_FLG_CONSTTIME);
- mont->N.neg = 0;
- #ifdef MONT_WORD
- {
- BIGNUM tmod;
- BN_ULONG buf[2];
- bn_init(&tmod);
- tmod.d = buf;
- tmod.dmax = 2;
- tmod.neg = 0;
- if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
- BN_set_flags(&tmod, BN_FLG_CONSTTIME);
- mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2;
- # if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
- /*
- * Only certain BN_BITS2<=32 platforms actually make use of n0[1],
- * and we could use the #else case (with a shorter R value) for the
- * others. However, currently only the assembler files do know which
- * is which.
- */
- BN_zero(R);
- if (!(BN_set_bit(R, 2 * BN_BITS2)))
- goto err;
- tmod.top = 0;
- if ((buf[0] = mod->d[0]))
- tmod.top = 1;
- if ((buf[1] = mod->top > 1 ? mod->d[1] : 0))
- tmod.top = 2;
- if (BN_is_one(&tmod))
- BN_zero(Ri);
- else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
- goto err;
- if (!BN_lshift(Ri, Ri, 2 * BN_BITS2))
- goto err; /* R*Ri */
- if (!BN_is_zero(Ri)) {
- if (!BN_sub_word(Ri, 1))
- goto err;
- } else { /* if N mod word size == 1 */
- if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL)
- goto err;
- /* Ri-- (mod double word size) */
- Ri->neg = 0;
- Ri->d[0] = BN_MASK2;
- Ri->d[1] = BN_MASK2;
- Ri->top = 2;
- }
- if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
- goto err;
- /*
- * Ni = (R*Ri-1)/N, keep only couple of least significant words:
- */
- mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
- mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
- # else
- BN_zero(R);
- if (!(BN_set_bit(R, BN_BITS2)))
- goto err; /* R */
- buf[0] = mod->d[0]; /* tmod = N mod word size */
- buf[1] = 0;
- tmod.top = buf[0] != 0 ? 1 : 0;
- /* Ri = R^-1 mod N */
- if (BN_is_one(&tmod))
- BN_zero(Ri);
- else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
- goto err;
- if (!BN_lshift(Ri, Ri, BN_BITS2))
- goto err; /* R*Ri */
- if (!BN_is_zero(Ri)) {
- if (!BN_sub_word(Ri, 1))
- goto err;
- } else { /* if N mod word size == 1 */
- if (!BN_set_word(Ri, BN_MASK2))
- goto err; /* Ri-- (mod word size) */
- }
- if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
- goto err;
- /*
- * Ni = (R*Ri-1)/N, keep only least significant word:
- */
- mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
- mont->n0[1] = 0;
- # endif
- }
- #else /* !MONT_WORD */
- { /* bignum version */
- mont->ri = BN_num_bits(&mont->N);
- BN_zero(R);
- if (!BN_set_bit(R, mont->ri))
- goto err; /* R = 2^ri */
- /* Ri = R^-1 mod N */
- if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL)
- goto err;
- if (!BN_lshift(Ri, Ri, mont->ri))
- goto err; /* R*Ri */
- if (!BN_sub_word(Ri, 1))
- goto err;
- /*
- * Ni = (R*Ri-1) / N
- */
- if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx))
- goto err;
- }
- #endif
- /* setup RR for conversions */
- BN_zero(&(mont->RR));
- if (!BN_set_bit(&(mont->RR), mont->ri * 2))
- goto err;
- if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx))
- goto err;
- for (i = mont->RR.top, ret = mont->N.top; i < ret; i++)
- mont->RR.d[i] = 0;
- mont->RR.top = ret;
- mont->RR.flags |= BN_FLG_FIXED_TOP;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
- {
- if (to == from)
- return to;
- if (!BN_copy(&(to->RR), &(from->RR)))
- return NULL;
- if (!BN_copy(&(to->N), &(from->N)))
- return NULL;
- if (!BN_copy(&(to->Ni), &(from->Ni)))
- return NULL;
- to->ri = from->ri;
- to->n0[0] = from->n0[0];
- to->n0[1] = from->n0[1];
- return to;
- }
- BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
- const BIGNUM *mod, BN_CTX *ctx)
- {
- BN_MONT_CTX *ret;
- if (!CRYPTO_THREAD_read_lock(lock))
- return NULL;
- ret = *pmont;
- CRYPTO_THREAD_unlock(lock);
- if (ret)
- return ret;
- /*
- * We don't want to serialize globally while doing our lazy-init math in
- * BN_MONT_CTX_set. That punishes threads that are doing independent
- * things. Instead, punish the case where more than one thread tries to
- * lazy-init the same 'pmont', by having each do the lazy-init math work
- * independently and only use the one from the thread that wins the race
- * (the losers throw away the work they've done).
- */
- ret = BN_MONT_CTX_new();
- if (ret == NULL)
- return NULL;
- if (!BN_MONT_CTX_set(ret, mod, ctx)) {
- BN_MONT_CTX_free(ret);
- return NULL;
- }
- /* The locked compare-and-set, after the local work is done. */
- if (!CRYPTO_THREAD_write_lock(lock)) {
- BN_MONT_CTX_free(ret);
- return NULL;
- }
- if (*pmont) {
- BN_MONT_CTX_free(ret);
- ret = *pmont;
- } else
- *pmont = ret;
- CRYPTO_THREAD_unlock(lock);
- return ret;
- }
|