123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- /*
- * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- void BN_RECP_CTX_init(BN_RECP_CTX *recp)
- {
- memset(recp, 0, sizeof(*recp));
- bn_init(&(recp->N));
- bn_init(&(recp->Nr));
- }
- BN_RECP_CTX *BN_RECP_CTX_new(void)
- {
- BN_RECP_CTX *ret;
- if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
- return NULL;
- bn_init(&(ret->N));
- bn_init(&(ret->Nr));
- ret->flags = BN_FLG_MALLOCED;
- return ret;
- }
- void BN_RECP_CTX_free(BN_RECP_CTX *recp)
- {
- if (recp == NULL)
- return;
- BN_free(&recp->N);
- BN_free(&recp->Nr);
- if (recp->flags & BN_FLG_MALLOCED)
- OPENSSL_free(recp);
- }
- int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx)
- {
- if (!BN_copy(&(recp->N), d))
- return 0;
- BN_zero(&(recp->Nr));
- recp->num_bits = BN_num_bits(d);
- recp->shift = 0;
- return 1;
- }
- int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
- BN_RECP_CTX *recp, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *a;
- const BIGNUM *ca;
- BN_CTX_start(ctx);
- if ((a = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (y != NULL) {
- if (x == y) {
- if (!BN_sqr(a, x, ctx))
- goto err;
- } else {
- if (!BN_mul(a, x, y, ctx))
- goto err;
- }
- ca = a;
- } else
- ca = x; /* Just do the mod */
- ret = BN_div_recp(NULL, r, ca, recp, ctx);
- err:
- BN_CTX_end(ctx);
- bn_check_top(r);
- return ret;
- }
- int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
- BN_RECP_CTX *recp, BN_CTX *ctx)
- {
- int i, j, ret = 0;
- BIGNUM *a, *b, *d, *r;
- BN_CTX_start(ctx);
- d = (dv != NULL) ? dv : BN_CTX_get(ctx);
- r = (rem != NULL) ? rem : BN_CTX_get(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- if (b == NULL)
- goto err;
- if (BN_ucmp(m, &(recp->N)) < 0) {
- BN_zero(d);
- if (!BN_copy(r, m)) {
- BN_CTX_end(ctx);
- return 0;
- }
- BN_CTX_end(ctx);
- return 1;
- }
- /*
- * We want the remainder Given input of ABCDEF / ab we need multiply
- * ABCDEF by 3 digests of the reciprocal of ab
- */
- /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
- i = BN_num_bits(m);
- j = recp->num_bits << 1;
- if (j > i)
- i = j;
- /* Nr := round(2^i / N) */
- if (i != recp->shift)
- recp->shift = BN_reciprocal(&(recp->Nr), &(recp->N), i, ctx);
- /* BN_reciprocal could have returned -1 for an error */
- if (recp->shift == -1)
- goto err;
- /*-
- * d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - BN_num_bits(N)))|
- * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - BN_num_bits(N)))|
- * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
- * = |m/N|
- */
- if (!BN_rshift(a, m, recp->num_bits))
- goto err;
- if (!BN_mul(b, a, &(recp->Nr), ctx))
- goto err;
- if (!BN_rshift(d, b, i - recp->num_bits))
- goto err;
- d->neg = 0;
- if (!BN_mul(b, &(recp->N), d, ctx))
- goto err;
- if (!BN_usub(r, m, b))
- goto err;
- r->neg = 0;
- j = 0;
- while (BN_ucmp(r, &(recp->N)) >= 0) {
- if (j++ > 2) {
- ERR_raise(ERR_LIB_BN, BN_R_BAD_RECIPROCAL);
- goto err;
- }
- if (!BN_usub(r, r, &(recp->N)))
- goto err;
- if (!BN_add_word(d, 1))
- goto err;
- }
- r->neg = BN_is_zero(r) ? 0 : m->neg;
- d->neg = m->neg ^ recp->N.neg;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- bn_check_top(dv);
- bn_check_top(rem);
- return ret;
- }
- /*
- * len is the expected size of the result We actually calculate with an extra
- * word of precision, so we can do faster division if the remainder is not
- * required.
- */
- /* r := 2^len / m */
- int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx)
- {
- int ret = -1;
- BIGNUM *t;
- BN_CTX_start(ctx);
- if ((t = BN_CTX_get(ctx)) == NULL)
- goto err;
- if (!BN_set_bit(t, len))
- goto err;
- if (!BN_div(r, NULL, t, m, ctx))
- goto err;
- ret = len;
- err:
- bn_check_top(r);
- BN_CTX_end(ctx);
- return ret;
- }
|