123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659 |
- /*
- * Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- *
- *
- * Originally written by Sergey Kirillov and Andrey Matyukov.
- * Special thanks to Ilya Albrekht for his valuable hints.
- * Intel Corporation
- *
- */
- #include <openssl/opensslconf.h>
- #include <openssl/crypto.h>
- #include "rsaz_exp.h"
- #ifndef RSAZ_ENABLED
- NON_EMPTY_TRANSLATION_UNIT
- #else
- # include <assert.h>
- # include <string.h>
- # if defined(__GNUC__)
- # define ALIGN1 __attribute__((aligned(1)))
- # elif defined(_MSC_VER)
- # define ALIGN1 __declspec(align(1))
- # else
- # define ALIGN1
- # endif
- # define ALIGN_OF(ptr, boundary) \
- ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
- /* Internal radix */
- # define DIGIT_SIZE (52)
- /* 52-bit mask */
- # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
- # define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
- # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
- /* Number of registers required to hold |digits_num| amount of qword digits */
- # define NUMBER_OF_REGISTERS(digits_num, register_size) \
- (((digits_num) * 64 + (register_size) - 1) / (register_size))
- typedef uint64_t ALIGN1 uint64_t_align1;
- static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
- static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
- static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
- int in_bitsize);
- static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
- static ossl_inline void set_bit(BN_ULONG *a, int idx);
- /* Number of |digit_size|-bit digits in |bitsize|-bit value */
- static ossl_inline int number_of_digits(int bitsize, int digit_size)
- {
- return (bitsize + digit_size - 1) / digit_size;
- }
- /*
- * For details of the methods declared below please refer to
- * crypto/bn/asm/rsaz-avx512.pl
- *
- * Naming conventions:
- * amm = Almost Montgomery Multiplication
- * ams = Almost Montgomery Squaring
- * 52xZZ - data represented as array of ZZ digits in 52-bit radix
- * _x1_/_x2_ - 1 or 2 independent inputs/outputs
- * _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
- */
- void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- BN_ULONG k0);
- void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- const BN_ULONG k0[2]);
- void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
- const BN_ULONG *red_table,
- int red_table_idx1, int red_table_idx2);
- void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- BN_ULONG k0);
- void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- const BN_ULONG k0[2]);
- void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
- const BN_ULONG *red_table,
- int red_table_idx1, int red_table_idx2);
- void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- BN_ULONG k0);
- void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- const BN_ULONG k0[2]);
- void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
- const BN_ULONG *red_table,
- int red_table_idx1, int red_table_idx2);
- static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
- const BN_ULONG *exp[2], const BN_ULONG *m,
- const BN_ULONG *rr, const BN_ULONG k0[2],
- int modulus_bitsize);
- /*
- * Dual Montgomery modular exponentiation using prime moduli of the
- * same bit size, optimized with AVX512 ISA.
- *
- * Input and output parameters for each exponentiation are independent and
- * denoted here by index |i|, i = 1..2.
- *
- * Input and output are all in regular 2^64 radix.
- *
- * Each moduli shall be |factor_size| bit size.
- *
- * Supported cases:
- * - 2x1024
- * - 2x1536
- * - 2x2048
- *
- * [out] res|i| - result of modular exponentiation: array of qword values
- * in regular (2^64) radix. Size of array shall be enough
- * to hold |factor_size| bits.
- * [in] base|i| - base
- * [in] exp|i| - exponent
- * [in] m|i| - moduli
- * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
- * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
- * [in] factor_size - moduli bit size
- *
- * \return 0 in case of failure,
- * 1 in case of success.
- */
- int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
- const BN_ULONG *base1,
- const BN_ULONG *exp1,
- const BN_ULONG *m1,
- const BN_ULONG *rr1,
- BN_ULONG k0_1,
- BN_ULONG *res2,
- const BN_ULONG *base2,
- const BN_ULONG *exp2,
- const BN_ULONG *m2,
- const BN_ULONG *rr2,
- BN_ULONG k0_2,
- int factor_size)
- {
- typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0);
- int ret = 0;
- /*
- * Number of word-size (BN_ULONG) digits to store exponent in redundant
- * representation.
- */
- int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
- int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
- /* Number of YMM registers required to store exponent's digits */
- int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
- /* Capacity of the register set (in qwords) to store exponent */
- int regs_capacity = ymm_regs_num * 4;
- BN_ULONG *base1_red, *m1_red, *rr1_red;
- BN_ULONG *base2_red, *m2_red, *rr2_red;
- BN_ULONG *coeff_red;
- BN_ULONG *storage = NULL;
- BN_ULONG *storage_aligned = NULL;
- int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
- + 64 /* alignment */;
- const BN_ULONG *exp[2] = {0};
- BN_ULONG k0[2] = {0};
- /* AMM = Almost Montgomery Multiplication */
- AMM amm = NULL;
- switch (factor_size) {
- case 1024:
- amm = ossl_rsaz_amm52x20_x1_ifma256;
- break;
- case 1536:
- amm = ossl_rsaz_amm52x30_x1_ifma256;
- break;
- case 2048:
- amm = ossl_rsaz_amm52x40_x1_ifma256;
- break;
- default:
- goto err;
- }
- storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
- if (storage == NULL)
- goto err;
- storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
- /* Memory layout for red(undant) representations */
- base1_red = storage_aligned;
- base2_red = storage_aligned + 1 * regs_capacity;
- m1_red = storage_aligned + 2 * regs_capacity;
- m2_red = storage_aligned + 3 * regs_capacity;
- rr1_red = storage_aligned + 4 * regs_capacity;
- rr2_red = storage_aligned + 5 * regs_capacity;
- coeff_red = storage_aligned + 6 * regs_capacity;
- /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
- to_words52(base1_red, regs_capacity, base1, factor_size);
- to_words52(base2_red, regs_capacity, base2, factor_size);
- to_words52(m1_red, regs_capacity, m1, factor_size);
- to_words52(m2_red, regs_capacity, m2, factor_size);
- to_words52(rr1_red, regs_capacity, rr1, factor_size);
- to_words52(rr2_red, regs_capacity, rr2, factor_size);
- /*
- * Compute target domain Montgomery converters RR' for each modulus
- * based on precomputed original domain's RR.
- *
- * RR -> RR' transformation steps:
- * (1) coeff = 2^k
- * (2) t = AMM(RR,RR) = RR^2 / R' mod m
- * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
- * where
- * k = 4 * (52 * digits52 - modlen)
- * R = 2^(64 * ceil(modlen/64)) mod m
- * RR = R^2 mod m
- * R' = 2^(52 * ceil(modlen/52)) mod m
- *
- * EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
- */
- memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
- /* (1) in reduced domain representation */
- set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
- amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
- amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
- amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
- amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
- exp[0] = exp1;
- exp[1] = exp2;
- k0[0] = k0_1;
- k0[1] = k0_2;
- /* Dual (2-exps in parallel) exponentiation */
- ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
- k0, factor_size);
- if (!ret)
- goto err;
- /* Convert rr_i back to regular radix */
- from_words52(res1, factor_size, rr1_red);
- from_words52(res2, factor_size, rr2_red);
- /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
- factor_size /= sizeof(BN_ULONG) * 8;
- bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
- bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
- err:
- if (storage != NULL) {
- OPENSSL_cleanse(storage, storage_len_bytes);
- OPENSSL_free(storage);
- }
- return ret;
- }
- /*
- * Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
- * the same bit size using Almost Montgomery Multiplication, optimized with
- * AVX512_IFMA256 ISA.
- *
- * The parameter w (window size) = 5.
- *
- * [out] res - result of modular exponentiation: 2x{20,30,40} qword
- * values in 2^52 radix.
- * [in] base - base (2x{20,30,40} qword values in 2^52 radix)
- * [in] exp - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
- * Exponent is not converted to redundant representation.
- * [in] m - moduli (2x{20,30,40} qword values in 2^52 radix)
- * [in] rr - Montgomery parameter for 2 moduli:
- * RR(1024) = 2^2080 mod m.
- * RR(1536) = 2^3120 mod m.
- * RR(2048) = 2^4160 mod m.
- * (2x{20,30,40} qword values in 2^52 radix)
- * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
- *
- * \return (void).
- */
- int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
- const BN_ULONG *base,
- const BN_ULONG *exp[2],
- const BN_ULONG *m,
- const BN_ULONG *rr,
- const BN_ULONG k0[2],
- int modulus_bitsize)
- {
- typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- const BN_ULONG k0[2]);
- typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
- int red_table_idx, int tbl_idx);
- int ret = 0;
- int idx;
- /* Exponent window size */
- int exp_win_size = 5;
- int exp_win_mask = (1U << exp_win_size) - 1;
- /*
- * Number of digits (64-bit words) in redundant representation to handle
- * modulus bits
- */
- int red_digits = 0;
- int exp_digits = 0;
- BN_ULONG *storage = NULL;
- BN_ULONG *storage_aligned = NULL;
- int storage_len_bytes = 0;
- /* Red(undant) result Y and multiplier X */
- BN_ULONG *red_Y = NULL; /* [2][red_digits] */
- BN_ULONG *red_X = NULL; /* [2][red_digits] */
- /* Pre-computed table of base powers */
- BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
- /* Expanded exponent */
- BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */
- /* Dual AMM */
- DAMM damm = NULL;
- /* Extractor from red_table */
- DEXTRACT extract = NULL;
- /*
- * Squaring is done using multiplication now. That can be a subject of
- * optimization in future.
- */
- # define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
- switch (modulus_bitsize) {
- case 1024:
- red_digits = 20;
- exp_digits = 16;
- damm = ossl_rsaz_amm52x20_x2_ifma256;
- extract = ossl_extract_multiplier_2x20_win5;
- break;
- case 1536:
- /* Extended with 2 digits padding to avoid mask ops in high YMM register */
- red_digits = 30 + 2;
- exp_digits = 24;
- damm = ossl_rsaz_amm52x30_x2_ifma256;
- extract = ossl_extract_multiplier_2x30_win5;
- break;
- case 2048:
- red_digits = 40;
- exp_digits = 32;
- damm = ossl_rsaz_amm52x40_x2_ifma256;
- extract = ossl_extract_multiplier_2x40_win5;
- break;
- default:
- goto err;
- }
- storage_len_bytes = (2 * red_digits /* red_Y */
- + 2 * red_digits /* red_X */
- + 2 * red_digits * (1U << exp_win_size) /* red_table */
- + 2 * (exp_digits + 1)) /* expz */
- * sizeof(BN_ULONG)
- + 64; /* alignment */
- storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
- if (storage == NULL)
- goto err;
- storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
- red_Y = storage_aligned;
- red_X = red_Y + 2 * red_digits;
- red_table = red_X + 2 * red_digits;
- expz = red_table + 2 * red_digits * (1U << exp_win_size);
- /*
- * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
- * table[0] = mont(x^0) = mont(1)
- * table[1] = mont(x^1) = mont(x)
- */
- red_X[0 * red_digits] = 1;
- red_X[1 * red_digits] = 1;
- damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0);
- damm(&red_table[1 * 2 * red_digits], base, rr, m, k0);
- for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
- DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
- &red_table[(1 * idx) * 2 * red_digits], m, k0);
- damm(&red_table[(2 * idx + 1) * 2 * red_digits],
- &red_table[(2 * idx) * 2 * red_digits],
- &red_table[1 * 2 * red_digits], m, k0);
- }
- /* Copy and expand exponents */
- memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
- expz[1 * (exp_digits + 1) - 1] = 0;
- memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
- expz[2 * (exp_digits + 1) - 1] = 0;
- /* Exponentiation */
- {
- const int rem = modulus_bitsize % exp_win_size;
- const BN_ULONG table_idx_mask = exp_win_mask;
- int exp_bit_no = modulus_bitsize - rem;
- int exp_chunk_no = exp_bit_no / 64;
- int exp_chunk_shift = exp_bit_no % 64;
- BN_ULONG red_table_idx_0, red_table_idx_1;
- /*
- * If rem == 0, then
- * exp_bit_no = modulus_bitsize - exp_win_size
- * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
- * which is { 4, 1, 3 } respectively.
- *
- * If this assertion ever fails the fix above is easy.
- */
- OPENSSL_assert(rem != 0);
- /* Process 1-st exp window - just init result */
- red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
- red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
- /*
- * The function operates with fixed moduli sizes divisible by 64,
- * thus table index here is always in supported range [0, EXP_WIN_SIZE).
- */
- red_table_idx_0 >>= exp_chunk_shift;
- red_table_idx_1 >>= exp_chunk_shift;
- extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
- /* Process other exp windows */
- for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
- /* Extract pre-computed multiplier from the table */
- {
- BN_ULONG T;
- exp_chunk_no = exp_bit_no / 64;
- exp_chunk_shift = exp_bit_no % 64;
- {
- red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
- T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
- red_table_idx_0 >>= exp_chunk_shift;
- /*
- * Get additional bits from then next quadword
- * when 64-bit boundaries are crossed.
- */
- if (exp_chunk_shift > 64 - exp_win_size) {
- T <<= (64 - exp_chunk_shift);
- red_table_idx_0 ^= T;
- }
- red_table_idx_0 &= table_idx_mask;
- }
- {
- red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
- T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
- red_table_idx_1 >>= exp_chunk_shift;
- /*
- * Get additional bits from then next quadword
- * when 64-bit boundaries are crossed.
- */
- if (exp_chunk_shift > 64 - exp_win_size) {
- T <<= (64 - exp_chunk_shift);
- red_table_idx_1 ^= T;
- }
- red_table_idx_1 &= table_idx_mask;
- }
- extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
- }
- /* Series of squaring */
- DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
- DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
- DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
- DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
- DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
- damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
- }
- }
- /*
- *
- * NB: After the last AMM of exponentiation in Montgomery domain, the result
- * may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
- * performs an AMM(x,1) which guarantees that the final result is less than
- * |m|, so no conditional subtraction is needed here. See [1] for details.
- *
- * [1] Gueron, S. Efficient software implementations of modular exponentiation.
- * DOI: 10.1007/s13389-012-0031-5
- */
- /* Convert result back in regular 2^52 domain */
- memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
- red_X[0 * red_digits] = 1;
- red_X[1 * red_digits] = 1;
- damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
- ret = 1;
- err:
- if (storage != NULL) {
- /* Clear whole storage */
- OPENSSL_cleanse(storage, storage_len_bytes);
- OPENSSL_free(storage);
- }
- #undef DAMS
- return ret;
- }
- static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
- {
- uint64_t digit = 0;
- assert(in != NULL);
- assert(in_len <= 8);
- for (; in_len > 0; in_len--) {
- digit <<= 8;
- digit += (uint64_t)(in[in_len - 1]);
- }
- return digit;
- }
- /*
- * Convert array of words in regular (base=2^64) representation to array of
- * words in redundant (base=2^52) one.
- */
- static void to_words52(BN_ULONG *out, int out_len,
- const BN_ULONG *in, int in_bitsize)
- {
- uint8_t *in_str = NULL;
- assert(out != NULL);
- assert(in != NULL);
- /* Check destination buffer capacity */
- assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
- in_str = (uint8_t *)in;
- for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
- out[0] = (*(uint64_t_align1 *)in_str) & DIGIT_MASK;
- in_str += 6;
- out[1] = ((*(uint64_t_align1 *)in_str) >> 4) & DIGIT_MASK;
- in_str += 7;
- out_len -= 2;
- }
- if (in_bitsize > DIGIT_SIZE) {
- uint64_t digit = get_digit(in_str, 7);
- out[0] = digit & DIGIT_MASK;
- in_str += 6;
- in_bitsize -= DIGIT_SIZE;
- digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
- out[1] = digit >> 4;
- out += 2;
- out_len -= 2;
- } else if (in_bitsize > 0) {
- out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
- out++;
- out_len--;
- }
- while (out_len > 0) {
- *out = 0;
- out_len--;
- out++;
- }
- }
- static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
- {
- assert(out != NULL);
- assert(out_len <= 8);
- for (; out_len > 0; out_len--) {
- *out++ = (uint8_t)(digit & 0xFF);
- digit >>= 8;
- }
- }
- /*
- * Convert array of words in redundant (base=2^52) representation to array of
- * words in regular (base=2^64) one.
- */
- static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
- {
- int i;
- int out_len = BITS2WORD64_SIZE(out_bitsize);
- assert(out != NULL);
- assert(in != NULL);
- for (i = 0; i < out_len; i++)
- out[i] = 0;
- {
- uint8_t *out_str = (uint8_t *)out;
- for (; out_bitsize >= (2 * DIGIT_SIZE);
- out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
- (*(uint64_t_align1 *)out_str) = in[0];
- out_str += 6;
- (*(uint64_t_align1 *)out_str) ^= in[1] << 4;
- out_str += 7;
- }
- if (out_bitsize > DIGIT_SIZE) {
- put_digit(out_str, 7, in[0]);
- out_str += 6;
- out_bitsize -= DIGIT_SIZE;
- put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
- (in[1] << 4 | in[0] >> 48));
- } else if (out_bitsize) {
- put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
- }
- }
- }
- /*
- * Set bit at index |idx| in the words array |a|.
- * It does not do any boundaries checks, make sure the index is valid before
- * calling the function.
- */
- static ossl_inline void set_bit(BN_ULONG *a, int idx)
- {
- assert(a != NULL);
- {
- int i, j;
- i = idx / BN_BITS2;
- j = idx % BN_BITS2;
- a[i] |= (((BN_ULONG)1) << j);
- }
- }
- #endif
|