123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- #! /usr/bin/env perl
- # Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the Apache License 2.0 (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- # $output is the last argument if it looks like a file (it has an extension)
- # $flavour is the first argument if it doesn't look like a file
- $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
- $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
- $output and open STDOUT,">$output";
- my @regs = map("x$_",(0..31));
- my @regaliases = ('zero','ra','sp','gp','tp','t0','t1','t2','s0','s1',
- map("a$_",(0..7)),
- map("s$_",(2..11)),
- map("t$_",(3..6))
- );
- my %reglookup;
- @reglookup{@regs} = @regs;
- @reglookup{@regaliases} = @regs;
- # Takes a register name, possibly an alias, and converts it to a register index
- # from 0 to 31
- sub read_reg {
- my $reg = lc shift;
- if (!exists($reglookup{$reg})) {
- die("Unknown register ".$reg);
- }
- my $regstr = $reglookup{$reg};
- if (!($regstr =~ /^x([0-9]+)$/)) {
- die("Could not process register ".$reg);
- }
- return $1;
- }
- sub rv64_rev8 {
- # Encoding for rev8 rd, rs instruction on RV64
- # XXXXXXXXXXXXX_ rs _XXX_ rd _XXXXXXX
- my $template = 0b011010111000_00000_101_00000_0010011;
- my $rd = read_reg shift;
- my $rs = read_reg shift;
- return ".word ".($template | ($rs << 15) | ($rd << 7));
- }
- sub rv64_clmul {
- # Encoding for clmul rd, rs1, rs2 instruction on RV64
- # XXXXXXX_ rs2 _ rs1 _XXX_ rd _XXXXXXX
- my $template = 0b0000101_00000_00000_001_00000_0110011;
- my $rd = read_reg shift;
- my $rs1 = read_reg shift;
- my $rs2 = read_reg shift;
- return ".word ".($template | ($rs2 << 20) | ($rs1 << 15) | ($rd << 7));
- }
- sub rv64_clmulh {
- # Encoding for clmulh rd, rs1, rs2 instruction on RV64
- # XXXXXXX_ rs2 _ rs1 _XXX_ rd _XXXXXXX
- my $template = 0b0000101_00000_00000_011_00000_0110011;
- my $rd = read_reg shift;
- my $rs1 = read_reg shift;
- my $rs2 = read_reg shift;
- return ".word ".($template | ($rs2 << 20) | ($rs1 << 15) | ($rd << 7));
- }
- ################################################################################
- # gcm_init_clmul_rv64i_zbb_zbc(u128 Htable[16], const u64 Xi[2])
- # Initialization function for clmul-based implementation of GMULT
- # This function is used in tandem with gcm_gmult_clmul_rv64i_zbb_zbc
- ################################################################################
- {
- my ($Haddr,$Xi,$TEMP) = ("a0","a1","a2");
- $code .= <<___;
- .text
- .balign 16
- .globl gcm_init_clmul_rv64i_zbb_zbc
- .type gcm_init_clmul_rv64i_zbb_zbc,\@function
- # Initialize clmul-based implementation of galois field multiplication routine.
- # gcm_init_clmul_rv64i_zbb_zbc(ctx->Htable, ctx->H.u)
- gcm_init_clmul_rv64i_zbb_zbc:
- # argument 0 = ctx->Htable (store H here)
- # argument 1 = H.u[] (2x 64-bit words) [H_high64, H_low64]
- # Simply store [H_high64, H_low64] for later
- ld $TEMP,0($Xi)
- sd $TEMP,0($Haddr)
- ld $TEMP,8($Xi)
- sd $TEMP,8($Haddr)
- ret
- ___
- }
- ################################################################################
- # gcm_gmult_clmul_rv64i_zbb_zbc(u64 Xi[2], const u128 Htable[16])
- # Compute GMULT (X*H mod f) using the Zbc (clmul) and Zbb (basic bit manip)
- # extensions, and the Modified Barrett Reduction technique
- ################################################################################
- {
- my ($Xi,$Haddr,$A1,$A0,$B1,$B0,$C1,$C0,$D1,$D0,$E1,$E0,$TEMP,$TEMP2,$qp_low) =
- ("a0","a1","a2","a3","a4","a5","a6","a7","t0","t1","t2","t3","t4","t5","t6");
- $code .= <<___;
- .text
- .balign 16
- .globl gcm_gmult_clmul_rv64i_zbb_zbc
- .type gcm_gmult_clmul_rv64i_zbb_zbc,\@function
- # static void gcm_gmult_clmul_rv64i_zbb_zbc(u64 Xi[2], const u128 Htable[16])
- # Computes product of X*H mod f
- gcm_gmult_clmul_rv64i_zbb_zbc:
- # Load X and H (H is saved previously in gcm_init_clmul_rv64i_zbb_zbc)
- ld $A1,0($Xi)
- ld $A0,8($Xi)
- ld $B1,0($Haddr)
- ld $B0,8($Haddr)
- li $qp_low,0xe100000000000000
- # Perform Katratsuba Multiplication to generate a 255-bit intermediate
- # A = [A1:A0]
- # B = [B1:B0]
- # Let:
- # [C1:C0] = A1*B1
- # [D1:D0] = A0*B0
- # [E1:E0] = (A0+A1)*(B0+B1)
- # Then:
- # A*B = [C1:C0+C1+D1+E1:D1+C0+D0+E0:D0]
- @{[rv64_rev8 $A1, $A1]}
- @{[rv64_clmul $C0,$A1,$B1]}
- @{[rv64_clmulh $C1,$A1,$B1]}
- @{[rv64_rev8 $A0,$A0]}
- @{[rv64_clmul $D0,$A0,$B0]}
- @{[rv64_clmulh $D1,$A0,$B0]}
- xor $TEMP,$A0,$A1
- xor $TEMP2,$B0,$B1
- @{[rv64_clmul $E0,$TEMP,$TEMP2]}
- @{[rv64_clmulh $E1,$TEMP,$TEMP2]}
- # 0th term is just C1
- # Construct term 1 in E1 (E1 only appears in dword 1)
- xor $E1,$E1,$D1
- xor $E1,$E1,$C1
- xor $E1,$E1,$C0
- # Term 1 is E1
- # Construct term 2 in E0 (E0 only appears in dword 2)
- xor $E0,$E0,$D0
- xor $E0,$E0,$C0
- xor $E0,$E0,$D1
- # Term 2 is E0
- # final term is just D0
- # X*H is now stored in [C1,E1,E0,D0]
- # Left-justify
- slli $C1,$C1,1
- # Or in the high bit of E1
- srli $TEMP,$E1,63
- or $C1,$C1,$TEMP
- slli $E1,$E1,1
- # Or in the high bit of E0
- srli $TEMP2,$E0,63
- or $E1,$E1,$TEMP2
- slli $E0,$E0,1
- # Or in the high bit of D0
- srli $TEMP,$D0,63
- or $E0,$E0,$TEMP
- slli $D0,$D0,1
- # Barrett Reduction
- # c = [E0, D0]
- # We want the top 128 bits of the result of c*f
- # We'll get this by computing the low-half (most significant 128 bits in
- # the reflected domain) of clmul(c,fs)<<1 first, then
- # xor in c to complete the calculation
- # AA = [AA1:AA0] = [E0,D0] = c
- # BB = [BB1:BB0] = [qp_low,0]
- # [CC1:CC0] = AA1*BB1
- # [DD1:DD0] = AA0*BB0
- # [EE1:EE0] = (AA0+AA1)*(BB0+BB1)
- # Then:
- # AA*BB = [CC1:CC0+CC1+DD1+EE1:DD1+CC0+DD0+EE0:DD0]
- # We only need CC0,DD1,DD0,EE0 to compute the low 128 bits of c * qp_low
- ___
- my ($CC0,$EE0,$AA1,$AA0,$BB1) = ($A0,$B1,$E0,$D0,$qp_low);
- $code .= <<___;
- @{[rv64_clmul $CC0,$AA1,$BB1]}
- #clmul DD0,AA0,BB0 # BB0 is 0, so DD0 = 0
- #clmulh DD1,AA0,BB0 # BB0 is 0, so DD1 = 0
- xor $TEMP,$AA0,$AA1
- #xor TEMP2,BB0,BB1 # TEMP2 = BB1 = qp_low
- @{[rv64_clmul $EE0,$TEMP,$BB1]}
- # Result is [N/A:N/A:DD1+CC0+DD0+EE0:DD0]
- # Simplifying: [CC0+EE0:0]
- xor $TEMP2,$CC0,$EE0
- # Shift left by 1 to correct for bit reflection
- slli $TEMP2,$TEMP2,1
- # xor into c = [E0,D0]
- # Note that only E0 is affected
- xor $E0,$E0,$TEMP2
- # Now, q = [E0,D0]
- # The final step is to compute clmul(q,[qp_low:0])<<1
- # The leftmost 128 bits are the reduced result.
- # Once again, we use Karatsuba multiplication, but many of the terms
- # simplify or cancel out.
- # AA = [AA1:AA0] = [E0,D0] = c
- # BB = [BB1:BB0] = [qp_low,0]
- # [CC1:CC0] = AA1*BB1
- # [DD1:DD0] = AA0*BB0
- # [EE1:EE0] = (AA0+AA1)*(BB0+BB1)
- # Then:
- # AA*BB = [CC1:CC0+CC1+DD1+EE1:DD1+CC0+DD0+EE0:DD0]
- # We need CC1,CC0,DD0,DD1,EE1,EE0 to compute the leftmost 128 bits of AA*BB
- ___
- my ($AA1,$AA0,$BB1,$CC1,$CC0,$EE1,$EE0) = ($E0,$D0,$qp_low,$A0,$A1,$C0,$B0);
- $code .= <<___;
- @{[rv64_clmul $CC0,$AA1,$BB1]}
- @{[rv64_clmulh $CC1,$AA1,$BB1]}
- #clmul DD0,AA0,BB0 # BB0 = 0 so DD0 = 0
- #clmulh DD1,AA0,BB0 # BB0 = 0 so DD1 = 0
- xor $TEMP,$AA0,$AA1
- #xor TEMP2,BB0,BB1 # BB0 = 0 to TEMP2 == BB1 == qp_low
- @{[rv64_clmul $EE0,$TEMP,$BB1]}
- @{[rv64_clmulh $EE1,$TEMP,$BB1]}
- # Need the DD1+CC0+DD0+EE0 term to shift its leftmost bit into the
- # intermediate result.
- # This is just CC0+EE0, store it in TEMP
- xor $TEMP,$CC0,$EE0
- # Result is [CC1:CC0+CC1+EE1:(a single bit)]<<1
- # Combine into [CC1:CC0]
- xor $CC0,$CC0,$CC1
- xor $CC0,$CC0,$EE1
- # Shift 128-bit quantity, xor in [C1,E1] and store
- slli $CC1,$CC1,1
- srli $TEMP2,$CC0,63
- or $CC1,$CC1,$TEMP2
- # xor in C1
- xor $CC1,$CC1,$C1
- @{[rv64_rev8 $CC1,$CC1]}
- slli $CC0,$CC0,1
- srli $TEMP,$TEMP,63
- or $CC0,$CC0,$TEMP
- # xor in E1
- xor $CC0,$CC0,$E1
- @{[rv64_rev8 $CC0,$CC0]}
- sd $CC1,0(a0)
- sd $CC0,8(a0)
- ret
- ___
- }
- print $code;
- close STDOUT or die "error closing STDOUT: $!";
|