123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460 |
- /*
- * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <assert.h>
- #include <openssl/bn.h>
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- /* The old slow way */
- #if 0
- int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
- BN_CTX *ctx)
- {
- int i, nm, nd;
- int ret = 0;
- BIGNUM *D;
- bn_check_top(m);
- bn_check_top(d);
- if (BN_is_zero(d)) {
- ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
- return 0;
- }
- if (BN_ucmp(m, d) < 0) {
- if (rem != NULL) {
- if (BN_copy(rem, m) == NULL)
- return 0;
- }
- if (dv != NULL)
- BN_zero(dv);
- return 1;
- }
- BN_CTX_start(ctx);
- D = BN_CTX_get(ctx);
- if (dv == NULL)
- dv = BN_CTX_get(ctx);
- if (rem == NULL)
- rem = BN_CTX_get(ctx);
- if (D == NULL || dv == NULL || rem == NULL)
- goto end;
- nd = BN_num_bits(d);
- nm = BN_num_bits(m);
- if (BN_copy(D, d) == NULL)
- goto end;
- if (BN_copy(rem, m) == NULL)
- goto end;
- /*
- * The next 2 are needed so we can do a dv->d[0]|=1 later since
- * BN_lshift1 will only work once there is a value :-)
- */
- BN_zero(dv);
- if (bn_wexpand(dv, 1) == NULL)
- goto end;
- dv->top = 1;
- if (!BN_lshift(D, D, nm - nd))
- goto end;
- for (i = nm - nd; i >= 0; i--) {
- if (!BN_lshift1(dv, dv))
- goto end;
- if (BN_ucmp(rem, D) >= 0) {
- dv->d[0] |= 1;
- if (!BN_usub(rem, rem, D))
- goto end;
- }
- /* CAN IMPROVE (and have now :=) */
- if (!BN_rshift1(D, D))
- goto end;
- }
- rem->neg = BN_is_zero(rem) ? 0 : m->neg;
- dv->neg = m->neg ^ d->neg;
- ret = 1;
- end:
- BN_CTX_end(ctx);
- return ret;
- }
- #else
- # if defined(BN_DIV3W)
- BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
- # elif 0
- /*
- * This is #if-ed away, because it's a reference for assembly implementations,
- * where it can and should be made constant-time. But if you want to test it,
- * just replace 0 with 1.
- */
- # if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
- # undef BN_ULLONG
- # define BN_ULLONG uint128_t
- # define BN_LLONG
- # endif
- # ifdef BN_LLONG
- # define BN_DIV3W
- /*
- * Interface is somewhat quirky, |m| is pointer to most significant limb,
- * and less significant limb is referred at |m[-1]|. This means that caller
- * is responsible for ensuring that |m[-1]| is valid. Second condition that
- * has to be met is that |d0|'s most significant bit has to be set. Or in
- * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top
- * does all this. The subroutine considers four limbs, two of which are
- * "overlapping," hence the name...
- */
- static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
- {
- BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1];
- BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1;
- BN_ULONG Q = 0, mask;
- int i;
- for (i = 0; i < BN_BITS2; i++) {
- Q <<= 1;
- if (R >= D) {
- Q |= 1;
- R -= D;
- }
- D >>= 1;
- }
- mask = 0 - (Q >> (BN_BITS2 - 1)); /* does it overflow? */
- Q <<= 1;
- Q |= (R >= D);
- return (Q | mask) & BN_MASK2;
- }
- # endif
- # endif
- static int bn_left_align(BIGNUM *num)
- {
- BN_ULONG *d = num->d, n, m, rmask;
- int top = num->top;
- int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
- lshift = BN_BITS2 - rshift;
- rshift %= BN_BITS2; /* say no to undefined behaviour */
- rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */
- rmask |= rmask >> 8;
- for (i = 0, m = 0; i < top; i++) {
- n = d[i];
- d[i] = ((n << lshift) | m) & BN_MASK2;
- m = (n >> rshift) & rmask;
- }
- return lshift;
- }
- # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
- && !defined(PEDANTIC) && !defined(BN_DIV3W)
- # if defined(__GNUC__) && __GNUC__>=2
- # if defined(__i386) || defined (__i386__)
- /*-
- * There were two reasons for implementing this template:
- * - GNU C generates a call to a function (__udivdi3 to be exact)
- * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
- * understand why...);
- * - divl doesn't only calculate quotient, but also leaves
- * remainder in %edx which we can definitely use here:-)
- */
- # undef bn_div_words
- # define bn_div_words(n0,n1,d0) \
- ({ asm volatile ( \
- "divl %4" \
- : "=a"(q), "=d"(rem) \
- : "a"(n1), "d"(n0), "r"(d0) \
- : "cc"); \
- q; \
- })
- # define REMAINDER_IS_ALREADY_CALCULATED
- # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
- /*
- * Same story here, but it's 128-bit by 64-bit division. Wow!
- */
- # undef bn_div_words
- # define bn_div_words(n0,n1,d0) \
- ({ asm volatile ( \
- "divq %4" \
- : "=a"(q), "=d"(rem) \
- : "a"(n1), "d"(n0), "r"(d0) \
- : "cc"); \
- q; \
- })
- # define REMAINDER_IS_ALREADY_CALCULATED
- # endif /* __<cpu> */
- # endif /* __GNUC__ */
- # endif /* OPENSSL_NO_ASM */
- /*-
- * BN_div computes dv := num / divisor, rounding towards
- * zero, and sets up rm such that dv*divisor + rm = num holds.
- * Thus:
- * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
- * rm->neg == num->neg (unless the remainder is zero)
- * If 'dv' or 'rm' is NULL, the respective value is not returned.
- */
- int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
- BN_CTX *ctx)
- {
- int ret;
- if (BN_is_zero(divisor)) {
- ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
- return 0;
- }
- /*
- * Invalid zero-padding would have particularly bad consequences so don't
- * just rely on bn_check_top() here (bn_check_top() works only for
- * BN_DEBUG builds)
- */
- if (divisor->d[divisor->top - 1] == 0) {
- ERR_raise(ERR_LIB_BN, BN_R_NOT_INITIALIZED);
- return 0;
- }
- ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
- if (ret) {
- if (dv != NULL)
- bn_correct_top(dv);
- if (rm != NULL)
- bn_correct_top(rm);
- }
- return ret;
- }
- /*
- * It's argued that *length* of *significant* part of divisor is public.
- * Even if it's private modulus that is. Again, *length* is assumed
- * public, but not *value*. Former is likely to be pre-defined by
- * algorithm with bit granularity, though below subroutine is invariant
- * of limb length. Thanks to this assumption we can require that |divisor|
- * may not be zero-padded, yet claim this subroutine "constant-time"(*).
- * This is because zero-padded dividend, |num|, is tolerated, so that
- * caller can pass dividend of public length(*), but with smaller amount
- * of significant limbs. This naturally means that quotient, |dv|, would
- * contain correspongly less significant limbs as well, and will be zero-
- * padded accordingly. Returned remainder, |rm|, will have same bit length
- * as divisor, also zero-padded if needed. These actually leave sign bits
- * in ambiguous state. In sense that we try to avoid negative zeros, while
- * zero-padded zeros would retain sign.
- *
- * (*) "Constant-time-ness" has two pre-conditions:
- *
- * - availability of constant-time bn_div_3_words;
- * - dividend is at least as "wide" as divisor, limb-wise, zero-padded
- * if so required, which shouldn't be a privacy problem, because
- * divisor's length is considered public;
- */
- int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
- const BIGNUM *divisor, BN_CTX *ctx)
- {
- int norm_shift, i, j, loop;
- BIGNUM *tmp, *snum, *sdiv, *res;
- BN_ULONG *resp, *wnum, *wnumtop;
- BN_ULONG d0, d1;
- int num_n, div_n, num_neg;
- assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
- bn_check_top(num);
- bn_check_top(divisor);
- bn_check_top(dv);
- bn_check_top(rm);
- BN_CTX_start(ctx);
- res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
- tmp = BN_CTX_get(ctx);
- snum = BN_CTX_get(ctx);
- sdiv = BN_CTX_get(ctx);
- if (sdiv == NULL)
- goto err;
- /* First we normalise the numbers */
- if (!BN_copy(sdiv, divisor))
- goto err;
- norm_shift = bn_left_align(sdiv);
- sdiv->neg = 0;
- /*
- * Note that bn_lshift_fixed_top's output is always one limb longer
- * than input, even when norm_shift is zero. This means that amount of
- * inner loop iterations is invariant of dividend value, and that one
- * doesn't need to compare dividend and divisor if they were originally
- * of the same bit length.
- */
- if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
- goto err;
- div_n = sdiv->top;
- num_n = snum->top;
- if (num_n <= div_n) {
- /* caller didn't pad dividend -> no constant-time guarantee... */
- if (bn_wexpand(snum, div_n + 1) == NULL)
- goto err;
- memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
- snum->top = num_n = div_n + 1;
- }
- loop = num_n - div_n;
- /*
- * Lets setup a 'window' into snum This is the part that corresponds to
- * the current 'area' being divided
- */
- wnum = &(snum->d[loop]);
- wnumtop = &(snum->d[num_n - 1]);
- /* Get the top 2 words of sdiv */
- d0 = sdiv->d[div_n - 1];
- d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
- /* Setup quotient */
- if (!bn_wexpand(res, loop))
- goto err;
- num_neg = num->neg;
- res->neg = (num_neg ^ divisor->neg);
- res->top = loop;
- res->flags |= BN_FLG_FIXED_TOP;
- resp = &(res->d[loop]);
- /* space for temp */
- if (!bn_wexpand(tmp, (div_n + 1)))
- goto err;
- for (i = 0; i < loop; i++, wnumtop--) {
- BN_ULONG q, l0;
- /*
- * the first part of the loop uses the top two words of snum and sdiv
- * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
- */
- # if defined(BN_DIV3W)
- q = bn_div_3_words(wnumtop, d1, d0);
- # else
- BN_ULONG n0, n1, rem = 0;
- n0 = wnumtop[0];
- n1 = wnumtop[-1];
- if (n0 == d0)
- q = BN_MASK2;
- else { /* n0 < d0 */
- BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
- # ifdef BN_LLONG
- BN_ULLONG t2;
- # if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
- q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0);
- # else
- q = bn_div_words(n0, n1, d0);
- # endif
- # ifndef REMAINDER_IS_ALREADY_CALCULATED
- /*
- * rem doesn't have to be BN_ULLONG. The least we
- * know it's less that d0, isn't it?
- */
- rem = (n1 - q * d0) & BN_MASK2;
- # endif
- t2 = (BN_ULLONG) d1 *q;
- for (;;) {
- if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2))
- break;
- q--;
- rem += d0;
- if (rem < d0)
- break; /* don't let rem overflow */
- t2 -= d1;
- }
- # else /* !BN_LLONG */
- BN_ULONG t2l, t2h;
- q = bn_div_words(n0, n1, d0);
- # ifndef REMAINDER_IS_ALREADY_CALCULATED
- rem = (n1 - q * d0) & BN_MASK2;
- # endif
- # if defined(BN_UMULT_LOHI)
- BN_UMULT_LOHI(t2l, t2h, d1, q);
- # elif defined(BN_UMULT_HIGH)
- t2l = d1 * q;
- t2h = BN_UMULT_HIGH(d1, q);
- # else
- {
- BN_ULONG ql, qh;
- t2l = LBITS(d1);
- t2h = HBITS(d1);
- ql = LBITS(q);
- qh = HBITS(q);
- mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
- }
- # endif
- for (;;) {
- if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
- break;
- q--;
- rem += d0;
- if (rem < d0)
- break; /* don't let rem overflow */
- if (t2l < d1)
- t2h--;
- t2l -= d1;
- }
- # endif /* !BN_LLONG */
- }
- # endif /* !BN_DIV3W */
- l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
- tmp->d[div_n] = l0;
- wnum--;
- /*
- * ignore top values of the bignums just sub the two BN_ULONG arrays
- * with bn_sub_words
- */
- l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
- q -= l0;
- /*
- * Note: As we have considered only the leading two BN_ULONGs in
- * the calculation of q, sdiv * q might be greater than wnum (but
- * then (q-1) * sdiv is less or equal than wnum)
- */
- for (l0 = 0 - l0, j = 0; j < div_n; j++)
- tmp->d[j] = sdiv->d[j] & l0;
- l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
- (*wnumtop) += l0;
- assert((*wnumtop) == 0);
- /* store part of the result */
- *--resp = q;
- }
- /* snum holds remainder, it's as wide as divisor */
- snum->neg = num_neg;
- snum->top = div_n;
- snum->flags |= BN_FLG_FIXED_TOP;
- if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0)
- goto err;
- BN_CTX_end(ctx);
- return 1;
- err:
- bn_check_top(rm);
- BN_CTX_end(ctx);
- return 0;
- }
- #endif
|