bn_exp.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. /*
  2. * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include "internal/cryptlib.h"
  10. #include "internal/constant_time.h"
  11. #include "bn_local.h"
  12. #include <stdlib.h>
  13. #ifdef _WIN32
  14. # include <malloc.h>
  15. # ifndef alloca
  16. # define alloca _alloca
  17. # endif
  18. #elif defined(__GNUC__)
  19. # ifndef alloca
  20. # define alloca(s) __builtin_alloca((s))
  21. # endif
  22. #elif defined(__sun)
  23. # include <alloca.h>
  24. #endif
  25. #include "rsaz_exp.h"
  26. #undef SPARC_T4_MONT
  27. #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
  28. # include "crypto/sparc_arch.h"
  29. # define SPARC_T4_MONT
  30. #endif
  31. /* maximum precomputation table size for *variable* sliding windows */
  32. #define TABLE_SIZE 32
  33. /*
  34. * Beyond this limit the constant time code is disabled due to
  35. * the possible overflow in the computation of powerbufLen in
  36. * BN_mod_exp_mont_consttime.
  37. * When this limit is exceeded, the computation will be done using
  38. * non-constant time code, but it will take very long.
  39. */
  40. #define BN_CONSTTIME_SIZE_LIMIT (INT_MAX / BN_BYTES / 256)
  41. /* this one works - simple but works */
  42. int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
  43. {
  44. int i, bits, ret = 0;
  45. BIGNUM *v, *rr;
  46. if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
  47. || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
  48. /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
  49. ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  50. return 0;
  51. }
  52. BN_CTX_start(ctx);
  53. rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
  54. v = BN_CTX_get(ctx);
  55. if (rr == NULL || v == NULL)
  56. goto err;
  57. if (BN_copy(v, a) == NULL)
  58. goto err;
  59. bits = BN_num_bits(p);
  60. if (BN_is_odd(p)) {
  61. if (BN_copy(rr, a) == NULL)
  62. goto err;
  63. } else {
  64. if (!BN_one(rr))
  65. goto err;
  66. }
  67. for (i = 1; i < bits; i++) {
  68. if (!BN_sqr(v, v, ctx))
  69. goto err;
  70. if (BN_is_bit_set(p, i)) {
  71. if (!BN_mul(rr, rr, v, ctx))
  72. goto err;
  73. }
  74. }
  75. if (r != rr && BN_copy(r, rr) == NULL)
  76. goto err;
  77. ret = 1;
  78. err:
  79. BN_CTX_end(ctx);
  80. bn_check_top(r);
  81. return ret;
  82. }
  83. int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
  84. BN_CTX *ctx)
  85. {
  86. int ret;
  87. bn_check_top(a);
  88. bn_check_top(p);
  89. bn_check_top(m);
  90. /*-
  91. * For even modulus m = 2^k*m_odd, it might make sense to compute
  92. * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
  93. * exponentiation for the odd part), using appropriate exponent
  94. * reductions, and combine the results using the CRT.
  95. *
  96. * For now, we use Montgomery only if the modulus is odd; otherwise,
  97. * exponentiation using the reciprocal-based quick remaindering
  98. * algorithm is used.
  99. *
  100. * (Timing obtained with expspeed.c [computations a^p mod m
  101. * where a, p, m are of the same length: 256, 512, 1024, 2048,
  102. * 4096, 8192 bits], compared to the running time of the
  103. * standard algorithm:
  104. *
  105. * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
  106. * 55 .. 77 % [UltraSparc processor, but
  107. * debug-solaris-sparcv8-gcc conf.]
  108. *
  109. * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
  110. * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
  111. *
  112. * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
  113. * at 2048 and more bits, but at 512 and 1024 bits, it was
  114. * slower even than the standard algorithm!
  115. *
  116. * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
  117. * should be obtained when the new Montgomery reduction code
  118. * has been integrated into OpenSSL.)
  119. */
  120. #define MONT_MUL_MOD
  121. #define MONT_EXP_WORD
  122. #define RECP_MUL_MOD
  123. #ifdef MONT_MUL_MOD
  124. if (BN_is_odd(m)) {
  125. # ifdef MONT_EXP_WORD
  126. if (a->top == 1 && !a->neg
  127. && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
  128. && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
  129. && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
  130. BN_ULONG A = a->d[0];
  131. ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
  132. } else
  133. # endif
  134. ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
  135. } else
  136. #endif
  137. #ifdef RECP_MUL_MOD
  138. {
  139. ret = BN_mod_exp_recp(r, a, p, m, ctx);
  140. }
  141. #else
  142. {
  143. ret = BN_mod_exp_simple(r, a, p, m, ctx);
  144. }
  145. #endif
  146. bn_check_top(r);
  147. return ret;
  148. }
  149. int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  150. const BIGNUM *m, BN_CTX *ctx)
  151. {
  152. int i, j, bits, ret = 0, wstart, wend, window;
  153. int start = 1;
  154. BIGNUM *aa;
  155. /* Table of variables obtained from 'ctx' */
  156. BIGNUM *val[TABLE_SIZE];
  157. BN_RECP_CTX recp;
  158. if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
  159. || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
  160. || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
  161. /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
  162. ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  163. return 0;
  164. }
  165. bits = BN_num_bits(p);
  166. if (bits == 0) {
  167. /* x**0 mod 1, or x**0 mod -1 is still zero. */
  168. if (BN_abs_is_word(m, 1)) {
  169. ret = 1;
  170. BN_zero(r);
  171. } else {
  172. ret = BN_one(r);
  173. }
  174. return ret;
  175. }
  176. BN_RECP_CTX_init(&recp);
  177. BN_CTX_start(ctx);
  178. aa = BN_CTX_get(ctx);
  179. val[0] = BN_CTX_get(ctx);
  180. if (val[0] == NULL)
  181. goto err;
  182. if (m->neg) {
  183. /* ignore sign of 'm' */
  184. if (!BN_copy(aa, m))
  185. goto err;
  186. aa->neg = 0;
  187. if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
  188. goto err;
  189. } else {
  190. if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
  191. goto err;
  192. }
  193. if (!BN_nnmod(val[0], a, m, ctx))
  194. goto err; /* 1 */
  195. if (BN_is_zero(val[0])) {
  196. BN_zero(r);
  197. ret = 1;
  198. goto err;
  199. }
  200. window = BN_window_bits_for_exponent_size(bits);
  201. if (window > 1) {
  202. if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
  203. goto err; /* 2 */
  204. j = 1 << (window - 1);
  205. for (i = 1; i < j; i++) {
  206. if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
  207. !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
  208. goto err;
  209. }
  210. }
  211. start = 1; /* This is used to avoid multiplication etc
  212. * when there is only the value '1' in the
  213. * buffer. */
  214. wstart = bits - 1; /* The top bit of the window */
  215. wend = 0; /* The bottom bit of the window */
  216. if (!BN_one(r))
  217. goto err;
  218. for (;;) {
  219. int wvalue; /* The 'value' of the window */
  220. if (BN_is_bit_set(p, wstart) == 0) {
  221. if (!start)
  222. if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
  223. goto err;
  224. if (wstart == 0)
  225. break;
  226. wstart--;
  227. continue;
  228. }
  229. /*
  230. * We now have wstart on a 'set' bit, we now need to work out how bit
  231. * a window to do. To do this we need to scan forward until the last
  232. * set bit before the end of the window
  233. */
  234. wvalue = 1;
  235. wend = 0;
  236. for (i = 1; i < window; i++) {
  237. if (wstart - i < 0)
  238. break;
  239. if (BN_is_bit_set(p, wstart - i)) {
  240. wvalue <<= (i - wend);
  241. wvalue |= 1;
  242. wend = i;
  243. }
  244. }
  245. /* wend is the size of the current window */
  246. j = wend + 1;
  247. /* add the 'bytes above' */
  248. if (!start)
  249. for (i = 0; i < j; i++) {
  250. if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
  251. goto err;
  252. }
  253. /* wvalue will be an odd number < 2^window */
  254. if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
  255. goto err;
  256. /* move the 'window' down further */
  257. wstart -= wend + 1;
  258. start = 0;
  259. if (wstart < 0)
  260. break;
  261. }
  262. ret = 1;
  263. err:
  264. BN_CTX_end(ctx);
  265. BN_RECP_CTX_free(&recp);
  266. bn_check_top(r);
  267. return ret;
  268. }
  269. int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
  270. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
  271. {
  272. int i, j, bits, ret = 0, wstart, wend, window;
  273. int start = 1;
  274. BIGNUM *d, *r;
  275. const BIGNUM *aa;
  276. /* Table of variables obtained from 'ctx' */
  277. BIGNUM *val[TABLE_SIZE];
  278. BN_MONT_CTX *mont = NULL;
  279. bn_check_top(a);
  280. bn_check_top(p);
  281. bn_check_top(m);
  282. if (!BN_is_odd(m)) {
  283. ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
  284. return 0;
  285. }
  286. if (m->top <= BN_CONSTTIME_SIZE_LIMIT
  287. && (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
  288. || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
  289. || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)) {
  290. return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
  291. }
  292. bits = BN_num_bits(p);
  293. if (bits == 0) {
  294. /* x**0 mod 1, or x**0 mod -1 is still zero. */
  295. if (BN_abs_is_word(m, 1)) {
  296. ret = 1;
  297. BN_zero(rr);
  298. } else {
  299. ret = BN_one(rr);
  300. }
  301. return ret;
  302. }
  303. BN_CTX_start(ctx);
  304. d = BN_CTX_get(ctx);
  305. r = BN_CTX_get(ctx);
  306. val[0] = BN_CTX_get(ctx);
  307. if (val[0] == NULL)
  308. goto err;
  309. /*
  310. * If this is not done, things will break in the montgomery part
  311. */
  312. if (in_mont != NULL)
  313. mont = in_mont;
  314. else {
  315. if ((mont = BN_MONT_CTX_new()) == NULL)
  316. goto err;
  317. if (!BN_MONT_CTX_set(mont, m, ctx))
  318. goto err;
  319. }
  320. if (a->neg || BN_ucmp(a, m) >= 0) {
  321. if (!BN_nnmod(val[0], a, m, ctx))
  322. goto err;
  323. aa = val[0];
  324. } else
  325. aa = a;
  326. if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
  327. goto err; /* 1 */
  328. window = BN_window_bits_for_exponent_size(bits);
  329. if (window > 1) {
  330. if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
  331. goto err; /* 2 */
  332. j = 1 << (window - 1);
  333. for (i = 1; i < j; i++) {
  334. if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
  335. !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
  336. goto err;
  337. }
  338. }
  339. start = 1; /* This is used to avoid multiplication etc
  340. * when there is only the value '1' in the
  341. * buffer. */
  342. wstart = bits - 1; /* The top bit of the window */
  343. wend = 0; /* The bottom bit of the window */
  344. #if 1 /* by Shay Gueron's suggestion */
  345. j = m->top; /* borrow j */
  346. if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
  347. if (bn_wexpand(r, j) == NULL)
  348. goto err;
  349. /* 2^(top*BN_BITS2) - m */
  350. r->d[0] = (0 - m->d[0]) & BN_MASK2;
  351. for (i = 1; i < j; i++)
  352. r->d[i] = (~m->d[i]) & BN_MASK2;
  353. r->top = j;
  354. r->flags |= BN_FLG_FIXED_TOP;
  355. } else
  356. #endif
  357. if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
  358. goto err;
  359. for (;;) {
  360. int wvalue; /* The 'value' of the window */
  361. if (BN_is_bit_set(p, wstart) == 0) {
  362. if (!start) {
  363. if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
  364. goto err;
  365. }
  366. if (wstart == 0)
  367. break;
  368. wstart--;
  369. continue;
  370. }
  371. /*
  372. * We now have wstart on a 'set' bit, we now need to work out how bit
  373. * a window to do. To do this we need to scan forward until the last
  374. * set bit before the end of the window
  375. */
  376. wvalue = 1;
  377. wend = 0;
  378. for (i = 1; i < window; i++) {
  379. if (wstart - i < 0)
  380. break;
  381. if (BN_is_bit_set(p, wstart - i)) {
  382. wvalue <<= (i - wend);
  383. wvalue |= 1;
  384. wend = i;
  385. }
  386. }
  387. /* wend is the size of the current window */
  388. j = wend + 1;
  389. /* add the 'bytes above' */
  390. if (!start)
  391. for (i = 0; i < j; i++) {
  392. if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
  393. goto err;
  394. }
  395. /* wvalue will be an odd number < 2^window */
  396. if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
  397. goto err;
  398. /* move the 'window' down further */
  399. wstart -= wend + 1;
  400. start = 0;
  401. if (wstart < 0)
  402. break;
  403. }
  404. /*
  405. * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
  406. * removes padding [if any] and makes return value suitable for public
  407. * API consumer.
  408. */
  409. #if defined(SPARC_T4_MONT)
  410. if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
  411. j = mont->N.top; /* borrow j */
  412. val[0]->d[0] = 1; /* borrow val[0] */
  413. for (i = 1; i < j; i++)
  414. val[0]->d[i] = 0;
  415. val[0]->top = j;
  416. if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
  417. goto err;
  418. } else
  419. #endif
  420. if (!BN_from_montgomery(rr, r, mont, ctx))
  421. goto err;
  422. ret = 1;
  423. err:
  424. if (in_mont == NULL)
  425. BN_MONT_CTX_free(mont);
  426. BN_CTX_end(ctx);
  427. bn_check_top(rr);
  428. return ret;
  429. }
  430. static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
  431. {
  432. BN_ULONG ret = 0;
  433. int wordpos;
  434. wordpos = bitpos / BN_BITS2;
  435. bitpos %= BN_BITS2;
  436. if (wordpos >= 0 && wordpos < a->top) {
  437. ret = a->d[wordpos] & BN_MASK2;
  438. if (bitpos) {
  439. ret >>= bitpos;
  440. if (++wordpos < a->top)
  441. ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
  442. }
  443. }
  444. return ret & BN_MASK2;
  445. }
  446. /*
  447. * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
  448. * layout so that accessing any of these table values shows the same access
  449. * pattern as far as cache lines are concerned. The following functions are
  450. * used to transfer a BIGNUM from/to that table.
  451. */
  452. static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
  453. unsigned char *buf, int idx,
  454. int window)
  455. {
  456. int i, j;
  457. int width = 1 << window;
  458. BN_ULONG *table = (BN_ULONG *)buf;
  459. if (top > b->top)
  460. top = b->top; /* this works because 'buf' is explicitly
  461. * zeroed */
  462. for (i = 0, j = idx; i < top; i++, j += width) {
  463. table[j] = b->d[i];
  464. }
  465. return 1;
  466. }
  467. static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
  468. unsigned char *buf, int idx,
  469. int window)
  470. {
  471. int i, j;
  472. int width = 1 << window;
  473. /*
  474. * We declare table 'volatile' in order to discourage compiler
  475. * from reordering loads from the table. Concern is that if
  476. * reordered in specific manner loads might give away the
  477. * information we are trying to conceal. Some would argue that
  478. * compiler can reorder them anyway, but it can as well be
  479. * argued that doing so would be violation of standard...
  480. */
  481. volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
  482. if (bn_wexpand(b, top) == NULL)
  483. return 0;
  484. if (window <= 3) {
  485. for (i = 0; i < top; i++, table += width) {
  486. BN_ULONG acc = 0;
  487. for (j = 0; j < width; j++) {
  488. acc |= table[j] &
  489. ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
  490. }
  491. b->d[i] = acc;
  492. }
  493. } else {
  494. int xstride = 1 << (window - 2);
  495. BN_ULONG y0, y1, y2, y3;
  496. i = idx >> (window - 2); /* equivalent of idx / xstride */
  497. idx &= xstride - 1; /* equivalent of idx % xstride */
  498. y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
  499. y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
  500. y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
  501. y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
  502. for (i = 0; i < top; i++, table += width) {
  503. BN_ULONG acc = 0;
  504. for (j = 0; j < xstride; j++) {
  505. acc |= ( (table[j + 0 * xstride] & y0) |
  506. (table[j + 1 * xstride] & y1) |
  507. (table[j + 2 * xstride] & y2) |
  508. (table[j + 3 * xstride] & y3) )
  509. & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
  510. }
  511. b->d[i] = acc;
  512. }
  513. }
  514. b->top = top;
  515. b->flags |= BN_FLG_FIXED_TOP;
  516. return 1;
  517. }
  518. /*
  519. * Given a pointer value, compute the next address that is a cache line
  520. * multiple.
  521. */
  522. #define MOD_EXP_CTIME_ALIGN(x_) \
  523. ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
  524. /*
  525. * This variant of BN_mod_exp_mont() uses fixed windows and the special
  526. * precomputation memory layout to limit data-dependency to a minimum to
  527. * protect secret exponents (cf. the hyper-threading timing attacks pointed
  528. * out by Colin Percival,
  529. * http://www.daemonology.net/hyperthreading-considered-harmful/)
  530. */
  531. int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
  532. const BIGNUM *m, BN_CTX *ctx,
  533. BN_MONT_CTX *in_mont)
  534. {
  535. int i, bits, ret = 0, window, wvalue, wmask, window0;
  536. int top;
  537. BN_MONT_CTX *mont = NULL;
  538. int numPowers;
  539. unsigned char *powerbufFree = NULL;
  540. int powerbufLen = 0;
  541. unsigned char *powerbuf = NULL;
  542. BIGNUM tmp, am;
  543. #if defined(SPARC_T4_MONT)
  544. unsigned int t4 = 0;
  545. #endif
  546. bn_check_top(a);
  547. bn_check_top(p);
  548. bn_check_top(m);
  549. if (!BN_is_odd(m)) {
  550. ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
  551. return 0;
  552. }
  553. top = m->top;
  554. if (top > BN_CONSTTIME_SIZE_LIMIT) {
  555. /* Prevent overflowing the powerbufLen computation below */
  556. return BN_mod_exp_mont(rr, a, p, m, ctx, in_mont);
  557. }
  558. /*
  559. * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
  560. * whether the top bits are zero.
  561. */
  562. bits = p->top * BN_BITS2;
  563. if (bits == 0) {
  564. /* x**0 mod 1, or x**0 mod -1 is still zero. */
  565. if (BN_abs_is_word(m, 1)) {
  566. ret = 1;
  567. BN_zero(rr);
  568. } else {
  569. ret = BN_one(rr);
  570. }
  571. return ret;
  572. }
  573. BN_CTX_start(ctx);
  574. /*
  575. * Allocate a montgomery context if it was not supplied by the caller. If
  576. * this is not done, things will break in the montgomery part.
  577. */
  578. if (in_mont != NULL)
  579. mont = in_mont;
  580. else {
  581. if ((mont = BN_MONT_CTX_new()) == NULL)
  582. goto err;
  583. if (!BN_MONT_CTX_set(mont, m, ctx))
  584. goto err;
  585. }
  586. if (a->neg || BN_ucmp(a, m) >= 0) {
  587. BIGNUM *reduced = BN_CTX_get(ctx);
  588. if (reduced == NULL
  589. || !BN_nnmod(reduced, a, m, ctx)) {
  590. goto err;
  591. }
  592. a = reduced;
  593. }
  594. #ifdef RSAZ_ENABLED
  595. /*
  596. * If the size of the operands allow it, perform the optimized
  597. * RSAZ exponentiation. For further information see
  598. * crypto/bn/rsaz_exp.c and accompanying assembly modules.
  599. */
  600. if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
  601. && rsaz_avx2_eligible()) {
  602. if (NULL == bn_wexpand(rr, 16))
  603. goto err;
  604. RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
  605. mont->n0[0]);
  606. rr->top = 16;
  607. rr->neg = 0;
  608. bn_correct_top(rr);
  609. ret = 1;
  610. goto err;
  611. } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
  612. if (NULL == bn_wexpand(rr, 8))
  613. goto err;
  614. RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
  615. rr->top = 8;
  616. rr->neg = 0;
  617. bn_correct_top(rr);
  618. ret = 1;
  619. goto err;
  620. }
  621. #endif
  622. /* Get the window size to use with size of p. */
  623. window = BN_window_bits_for_ctime_exponent_size(bits);
  624. #if defined(SPARC_T4_MONT)
  625. if (window >= 5 && (top & 15) == 0 && top <= 64 &&
  626. (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
  627. (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
  628. window = 5;
  629. else
  630. #endif
  631. #if defined(OPENSSL_BN_ASM_MONT5)
  632. if (window >= 5 && top <= BN_SOFT_LIMIT) {
  633. window = 5; /* ~5% improvement for RSA2048 sign, and even
  634. * for RSA4096 */
  635. /* reserve space for mont->N.d[] copy */
  636. powerbufLen += top * sizeof(mont->N.d[0]);
  637. }
  638. #endif
  639. (void)0;
  640. /*
  641. * Allocate a buffer large enough to hold all of the pre-computed powers
  642. * of am, am itself and tmp.
  643. */
  644. numPowers = 1 << window;
  645. powerbufLen += sizeof(m->d[0]) * (top * numPowers +
  646. ((2 * top) >
  647. numPowers ? (2 * top) : numPowers));
  648. #ifdef alloca
  649. if (powerbufLen < 3072)
  650. powerbufFree =
  651. alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
  652. else
  653. #endif
  654. if ((powerbufFree =
  655. OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
  656. == NULL)
  657. goto err;
  658. powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
  659. memset(powerbuf, 0, powerbufLen);
  660. #ifdef alloca
  661. if (powerbufLen < 3072)
  662. powerbufFree = NULL;
  663. #endif
  664. /* lay down tmp and am right after powers table */
  665. tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
  666. am.d = tmp.d + top;
  667. tmp.top = am.top = 0;
  668. tmp.dmax = am.dmax = top;
  669. tmp.neg = am.neg = 0;
  670. tmp.flags = am.flags = BN_FLG_STATIC_DATA;
  671. /* prepare a^0 in Montgomery domain */
  672. #if 1 /* by Shay Gueron's suggestion */
  673. if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
  674. /* 2^(top*BN_BITS2) - m */
  675. tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
  676. for (i = 1; i < top; i++)
  677. tmp.d[i] = (~m->d[i]) & BN_MASK2;
  678. tmp.top = top;
  679. } else
  680. #endif
  681. if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
  682. goto err;
  683. /* prepare a^1 in Montgomery domain */
  684. if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
  685. goto err;
  686. if (top > BN_SOFT_LIMIT)
  687. goto fallback;
  688. #if defined(SPARC_T4_MONT)
  689. if (t4) {
  690. typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
  691. const BN_ULONG *n0, const void *table,
  692. int power, int bits);
  693. int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
  694. const BN_ULONG *n0, const void *table,
  695. int power, int bits);
  696. int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
  697. const BN_ULONG *n0, const void *table,
  698. int power, int bits);
  699. int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
  700. const BN_ULONG *n0, const void *table,
  701. int power, int bits);
  702. int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
  703. const BN_ULONG *n0, const void *table,
  704. int power, int bits);
  705. static const bn_pwr5_mont_f pwr5_funcs[4] = {
  706. bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
  707. bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
  708. };
  709. bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
  710. typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
  711. const void *bp, const BN_ULONG *np,
  712. const BN_ULONG *n0);
  713. int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
  714. const BN_ULONG *np, const BN_ULONG *n0);
  715. int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
  716. const void *bp, const BN_ULONG *np,
  717. const BN_ULONG *n0);
  718. int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
  719. const void *bp, const BN_ULONG *np,
  720. const BN_ULONG *n0);
  721. int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
  722. const void *bp, const BN_ULONG *np,
  723. const BN_ULONG *n0);
  724. static const bn_mul_mont_f mul_funcs[4] = {
  725. bn_mul_mont_t4_8, bn_mul_mont_t4_16,
  726. bn_mul_mont_t4_24, bn_mul_mont_t4_32
  727. };
  728. bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
  729. void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
  730. const void *bp, const BN_ULONG *np,
  731. const BN_ULONG *n0, int num);
  732. void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
  733. const void *bp, const BN_ULONG *np,
  734. const BN_ULONG *n0, int num);
  735. void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
  736. const void *table, const BN_ULONG *np,
  737. const BN_ULONG *n0, int num, int power);
  738. void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
  739. void *table, size_t power);
  740. void bn_gather5_t4(BN_ULONG *out, size_t num,
  741. void *table, size_t power);
  742. void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
  743. BN_ULONG *np = mont->N.d, *n0 = mont->n0;
  744. int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
  745. * than 32 */
  746. /*
  747. * BN_to_montgomery can contaminate words above .top [in
  748. * BN_DEBUG build...
  749. */
  750. for (i = am.top; i < top; i++)
  751. am.d[i] = 0;
  752. for (i = tmp.top; i < top; i++)
  753. tmp.d[i] = 0;
  754. bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
  755. bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
  756. if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
  757. !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
  758. bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
  759. bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
  760. for (i = 3; i < 32; i++) {
  761. /* Calculate a^i = a^(i-1) * a */
  762. if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
  763. !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
  764. bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
  765. bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
  766. }
  767. /* switch to 64-bit domain */
  768. np = alloca(top * sizeof(BN_ULONG));
  769. top /= 2;
  770. bn_flip_t4(np, mont->N.d, top);
  771. /*
  772. * The exponent may not have a whole number of fixed-size windows.
  773. * To simplify the main loop, the initial window has between 1 and
  774. * full-window-size bits such that what remains is always a whole
  775. * number of windows
  776. */
  777. window0 = (bits - 1) % 5 + 1;
  778. wmask = (1 << window0) - 1;
  779. bits -= window0;
  780. wvalue = bn_get_bits(p, bits) & wmask;
  781. bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
  782. /*
  783. * Scan the exponent one window at a time starting from the most
  784. * significant bits.
  785. */
  786. while (bits > 0) {
  787. if (bits < stride)
  788. stride = bits;
  789. bits -= stride;
  790. wvalue = bn_get_bits(p, bits);
  791. if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
  792. continue;
  793. /* retry once and fall back */
  794. if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
  795. continue;
  796. bits += stride - 5;
  797. wvalue >>= stride - 5;
  798. wvalue &= 31;
  799. bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
  800. bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
  801. bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
  802. bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
  803. bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
  804. bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
  805. wvalue);
  806. }
  807. bn_flip_t4(tmp.d, tmp.d, top);
  808. top *= 2;
  809. /* back to 32-bit domain */
  810. tmp.top = top;
  811. bn_correct_top(&tmp);
  812. OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
  813. } else
  814. #endif
  815. #if defined(OPENSSL_BN_ASM_MONT5)
  816. if (window == 5 && top > 1) {
  817. /*
  818. * This optimization uses ideas from https://eprint.iacr.org/2011/239,
  819. * specifically optimization of cache-timing attack countermeasures,
  820. * pre-computation optimization, and Almost Montgomery Multiplication.
  821. *
  822. * The paper discusses a 4-bit window to optimize 512-bit modular
  823. * exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
  824. * important.
  825. *
  826. * |bn_mul_mont_gather5| and |bn_power5| implement the "almost"
  827. * reduction variant, so the values here may not be fully reduced.
  828. * They are bounded by R (i.e. they fit in |top| words), not |m|.
  829. * Additionally, we pass these "almost" reduced inputs into
  830. * |bn_mul_mont|, which implements the normal reduction variant.
  831. * Given those inputs, |bn_mul_mont| may not give reduced
  832. * output, but it will still produce "almost" reduced output.
  833. */
  834. void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
  835. const void *table, const BN_ULONG *np,
  836. const BN_ULONG *n0, int num, int power);
  837. void bn_scatter5(const BN_ULONG *inp, size_t num,
  838. void *table, size_t power);
  839. void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
  840. void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
  841. const void *table, const BN_ULONG *np,
  842. const BN_ULONG *n0, int num, int power);
  843. int bn_get_bits5(const BN_ULONG *ap, int off);
  844. BN_ULONG *n0 = mont->n0, *np;
  845. /*
  846. * BN_to_montgomery can contaminate words above .top [in
  847. * BN_DEBUG build...
  848. */
  849. for (i = am.top; i < top; i++)
  850. am.d[i] = 0;
  851. for (i = tmp.top; i < top; i++)
  852. tmp.d[i] = 0;
  853. /*
  854. * copy mont->N.d[] to improve cache locality
  855. */
  856. for (np = am.d + top, i = 0; i < top; i++)
  857. np[i] = mont->N.d[i];
  858. bn_scatter5(tmp.d, top, powerbuf, 0);
  859. bn_scatter5(am.d, am.top, powerbuf, 1);
  860. bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
  861. bn_scatter5(tmp.d, top, powerbuf, 2);
  862. # if 0
  863. for (i = 3; i < 32; i++) {
  864. /* Calculate a^i = a^(i-1) * a */
  865. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  866. bn_scatter5(tmp.d, top, powerbuf, i);
  867. }
  868. # else
  869. /* same as above, but uses squaring for 1/2 of operations */
  870. for (i = 4; i < 32; i *= 2) {
  871. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  872. bn_scatter5(tmp.d, top, powerbuf, i);
  873. }
  874. for (i = 3; i < 8; i += 2) {
  875. int j;
  876. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  877. bn_scatter5(tmp.d, top, powerbuf, i);
  878. for (j = 2 * i; j < 32; j *= 2) {
  879. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  880. bn_scatter5(tmp.d, top, powerbuf, j);
  881. }
  882. }
  883. for (; i < 16; i += 2) {
  884. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  885. bn_scatter5(tmp.d, top, powerbuf, i);
  886. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  887. bn_scatter5(tmp.d, top, powerbuf, 2 * i);
  888. }
  889. for (; i < 32; i += 2) {
  890. bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
  891. bn_scatter5(tmp.d, top, powerbuf, i);
  892. }
  893. # endif
  894. /*
  895. * The exponent may not have a whole number of fixed-size windows.
  896. * To simplify the main loop, the initial window has between 1 and
  897. * full-window-size bits such that what remains is always a whole
  898. * number of windows
  899. */
  900. window0 = (bits - 1) % 5 + 1;
  901. wmask = (1 << window0) - 1;
  902. bits -= window0;
  903. wvalue = bn_get_bits(p, bits) & wmask;
  904. bn_gather5(tmp.d, top, powerbuf, wvalue);
  905. /*
  906. * Scan the exponent one window at a time starting from the most
  907. * significant bits.
  908. */
  909. if (top & 7) {
  910. while (bits > 0) {
  911. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  912. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  913. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  914. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  915. bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
  916. bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
  917. bn_get_bits5(p->d, bits -= 5));
  918. }
  919. } else {
  920. while (bits > 0) {
  921. bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
  922. bn_get_bits5(p->d, bits -= 5));
  923. }
  924. }
  925. tmp.top = top;
  926. /*
  927. * The result is now in |tmp| in Montgomery form, but it may not be
  928. * fully reduced. This is within bounds for |BN_from_montgomery|
  929. * (tmp < R <= m*R) so it will, when converting from Montgomery form,
  930. * produce a fully reduced result.
  931. *
  932. * This differs from Figure 2 of the paper, which uses AMM(h, 1) to
  933. * convert from Montgomery form with unreduced output, followed by an
  934. * extra reduction step. In the paper's terminology, we replace
  935. * steps 9 and 10 with MM(h, 1).
  936. */
  937. } else
  938. #endif
  939. {
  940. fallback:
  941. if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
  942. goto err;
  943. if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
  944. goto err;
  945. /*
  946. * If the window size is greater than 1, then calculate
  947. * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
  948. * powers could instead be computed as (a^(i/2))^2 to use the slight
  949. * performance advantage of sqr over mul).
  950. */
  951. if (window > 1) {
  952. if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
  953. goto err;
  954. if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
  955. window))
  956. goto err;
  957. for (i = 3; i < numPowers; i++) {
  958. /* Calculate a^i = a^(i-1) * a */
  959. if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
  960. goto err;
  961. if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
  962. window))
  963. goto err;
  964. }
  965. }
  966. /*
  967. * The exponent may not have a whole number of fixed-size windows.
  968. * To simplify the main loop, the initial window has between 1 and
  969. * full-window-size bits such that what remains is always a whole
  970. * number of windows
  971. */
  972. window0 = (bits - 1) % window + 1;
  973. wmask = (1 << window0) - 1;
  974. bits -= window0;
  975. wvalue = bn_get_bits(p, bits) & wmask;
  976. if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
  977. window))
  978. goto err;
  979. wmask = (1 << window) - 1;
  980. /*
  981. * Scan the exponent one window at a time starting from the most
  982. * significant bits.
  983. */
  984. while (bits > 0) {
  985. /* Square the result window-size times */
  986. for (i = 0; i < window; i++)
  987. if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
  988. goto err;
  989. /*
  990. * Get a window's worth of bits from the exponent
  991. * This avoids calling BN_is_bit_set for each bit, which
  992. * is not only slower but also makes each bit vulnerable to
  993. * EM (and likely other) side-channel attacks like One&Done
  994. * (for details see "One&Done: A Single-Decryption EM-Based
  995. * Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
  996. * H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
  997. * M. Prvulovic, in USENIX Security'18)
  998. */
  999. bits -= window;
  1000. wvalue = bn_get_bits(p, bits) & wmask;
  1001. /*
  1002. * Fetch the appropriate pre-computed value from the pre-buf
  1003. */
  1004. if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
  1005. window))
  1006. goto err;
  1007. /* Multiply the result into the intermediate result */
  1008. if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
  1009. goto err;
  1010. }
  1011. }
  1012. /*
  1013. * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
  1014. * removes padding [if any] and makes return value suitable for public
  1015. * API consumer.
  1016. */
  1017. #if defined(SPARC_T4_MONT)
  1018. if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
  1019. am.d[0] = 1; /* borrow am */
  1020. for (i = 1; i < top; i++)
  1021. am.d[i] = 0;
  1022. if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
  1023. goto err;
  1024. } else
  1025. #endif
  1026. if (!BN_from_montgomery(rr, &tmp, mont, ctx))
  1027. goto err;
  1028. ret = 1;
  1029. err:
  1030. if (in_mont == NULL)
  1031. BN_MONT_CTX_free(mont);
  1032. if (powerbuf != NULL) {
  1033. OPENSSL_cleanse(powerbuf, powerbufLen);
  1034. OPENSSL_free(powerbufFree);
  1035. }
  1036. BN_CTX_end(ctx);
  1037. return ret;
  1038. }
  1039. int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
  1040. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
  1041. {
  1042. BN_MONT_CTX *mont = NULL;
  1043. int b, bits, ret = 0;
  1044. int r_is_one;
  1045. BN_ULONG w, next_w;
  1046. BIGNUM *r, *t;
  1047. BIGNUM *swap_tmp;
  1048. #define BN_MOD_MUL_WORD(r, w, m) \
  1049. (BN_mul_word(r, (w)) && \
  1050. (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
  1051. (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
  1052. /*
  1053. * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
  1054. * probably more overhead than always using BN_mod (which uses BN_copy if
  1055. * a similar test returns true).
  1056. */
  1057. /*
  1058. * We can use BN_mod and do not need BN_nnmod because our accumulator is
  1059. * never negative (the result of BN_mod does not depend on the sign of
  1060. * the modulus).
  1061. */
  1062. #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
  1063. (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
  1064. if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
  1065. || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
  1066. /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
  1067. ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  1068. return 0;
  1069. }
  1070. bn_check_top(p);
  1071. bn_check_top(m);
  1072. if (!BN_is_odd(m)) {
  1073. ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
  1074. return 0;
  1075. }
  1076. if (m->top == 1)
  1077. a %= m->d[0]; /* make sure that 'a' is reduced */
  1078. bits = BN_num_bits(p);
  1079. if (bits == 0) {
  1080. /* x**0 mod 1, or x**0 mod -1 is still zero. */
  1081. if (BN_abs_is_word(m, 1)) {
  1082. ret = 1;
  1083. BN_zero(rr);
  1084. } else {
  1085. ret = BN_one(rr);
  1086. }
  1087. return ret;
  1088. }
  1089. if (a == 0) {
  1090. BN_zero(rr);
  1091. ret = 1;
  1092. return ret;
  1093. }
  1094. BN_CTX_start(ctx);
  1095. r = BN_CTX_get(ctx);
  1096. t = BN_CTX_get(ctx);
  1097. if (t == NULL)
  1098. goto err;
  1099. if (in_mont != NULL)
  1100. mont = in_mont;
  1101. else {
  1102. if ((mont = BN_MONT_CTX_new()) == NULL)
  1103. goto err;
  1104. if (!BN_MONT_CTX_set(mont, m, ctx))
  1105. goto err;
  1106. }
  1107. r_is_one = 1; /* except for Montgomery factor */
  1108. /* bits-1 >= 0 */
  1109. /* The result is accumulated in the product r*w. */
  1110. w = a; /* bit 'bits-1' of 'p' is always set */
  1111. for (b = bits - 2; b >= 0; b--) {
  1112. /* First, square r*w. */
  1113. next_w = w * w;
  1114. if ((next_w / w) != w) { /* overflow */
  1115. if (r_is_one) {
  1116. if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
  1117. goto err;
  1118. r_is_one = 0;
  1119. } else {
  1120. if (!BN_MOD_MUL_WORD(r, w, m))
  1121. goto err;
  1122. }
  1123. next_w = 1;
  1124. }
  1125. w = next_w;
  1126. if (!r_is_one) {
  1127. if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
  1128. goto err;
  1129. }
  1130. /* Second, multiply r*w by 'a' if exponent bit is set. */
  1131. if (BN_is_bit_set(p, b)) {
  1132. next_w = w * a;
  1133. if ((next_w / a) != w) { /* overflow */
  1134. if (r_is_one) {
  1135. if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
  1136. goto err;
  1137. r_is_one = 0;
  1138. } else {
  1139. if (!BN_MOD_MUL_WORD(r, w, m))
  1140. goto err;
  1141. }
  1142. next_w = a;
  1143. }
  1144. w = next_w;
  1145. }
  1146. }
  1147. /* Finally, set r:=r*w. */
  1148. if (w != 1) {
  1149. if (r_is_one) {
  1150. if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
  1151. goto err;
  1152. r_is_one = 0;
  1153. } else {
  1154. if (!BN_MOD_MUL_WORD(r, w, m))
  1155. goto err;
  1156. }
  1157. }
  1158. if (r_is_one) { /* can happen only if a == 1 */
  1159. if (!BN_one(rr))
  1160. goto err;
  1161. } else {
  1162. if (!BN_from_montgomery(rr, r, mont, ctx))
  1163. goto err;
  1164. }
  1165. ret = 1;
  1166. err:
  1167. if (in_mont == NULL)
  1168. BN_MONT_CTX_free(mont);
  1169. BN_CTX_end(ctx);
  1170. bn_check_top(rr);
  1171. return ret;
  1172. }
  1173. /* The old fallback, simple version :-) */
  1174. int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  1175. const BIGNUM *m, BN_CTX *ctx)
  1176. {
  1177. int i, j, bits, ret = 0, wstart, wend, window;
  1178. int start = 1;
  1179. BIGNUM *d;
  1180. /* Table of variables obtained from 'ctx' */
  1181. BIGNUM *val[TABLE_SIZE];
  1182. if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
  1183. || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
  1184. || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
  1185. /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
  1186. ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  1187. return 0;
  1188. }
  1189. bits = BN_num_bits(p);
  1190. if (bits == 0) {
  1191. /* x**0 mod 1, or x**0 mod -1 is still zero. */
  1192. if (BN_abs_is_word(m, 1)) {
  1193. ret = 1;
  1194. BN_zero(r);
  1195. } else {
  1196. ret = BN_one(r);
  1197. }
  1198. return ret;
  1199. }
  1200. BN_CTX_start(ctx);
  1201. d = BN_CTX_get(ctx);
  1202. val[0] = BN_CTX_get(ctx);
  1203. if (val[0] == NULL)
  1204. goto err;
  1205. if (!BN_nnmod(val[0], a, m, ctx))
  1206. goto err; /* 1 */
  1207. if (BN_is_zero(val[0])) {
  1208. BN_zero(r);
  1209. ret = 1;
  1210. goto err;
  1211. }
  1212. window = BN_window_bits_for_exponent_size(bits);
  1213. if (window > 1) {
  1214. if (!BN_mod_mul(d, val[0], val[0], m, ctx))
  1215. goto err; /* 2 */
  1216. j = 1 << (window - 1);
  1217. for (i = 1; i < j; i++) {
  1218. if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
  1219. !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
  1220. goto err;
  1221. }
  1222. }
  1223. start = 1; /* This is used to avoid multiplication etc
  1224. * when there is only the value '1' in the
  1225. * buffer. */
  1226. wstart = bits - 1; /* The top bit of the window */
  1227. wend = 0; /* The bottom bit of the window */
  1228. if (!BN_one(r))
  1229. goto err;
  1230. for (;;) {
  1231. int wvalue; /* The 'value' of the window */
  1232. if (BN_is_bit_set(p, wstart) == 0) {
  1233. if (!start)
  1234. if (!BN_mod_mul(r, r, r, m, ctx))
  1235. goto err;
  1236. if (wstart == 0)
  1237. break;
  1238. wstart--;
  1239. continue;
  1240. }
  1241. /*
  1242. * We now have wstart on a 'set' bit, we now need to work out how bit
  1243. * a window to do. To do this we need to scan forward until the last
  1244. * set bit before the end of the window
  1245. */
  1246. wvalue = 1;
  1247. wend = 0;
  1248. for (i = 1; i < window; i++) {
  1249. if (wstart - i < 0)
  1250. break;
  1251. if (BN_is_bit_set(p, wstart - i)) {
  1252. wvalue <<= (i - wend);
  1253. wvalue |= 1;
  1254. wend = i;
  1255. }
  1256. }
  1257. /* wend is the size of the current window */
  1258. j = wend + 1;
  1259. /* add the 'bytes above' */
  1260. if (!start)
  1261. for (i = 0; i < j; i++) {
  1262. if (!BN_mod_mul(r, r, r, m, ctx))
  1263. goto err;
  1264. }
  1265. /* wvalue will be an odd number < 2^window */
  1266. if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
  1267. goto err;
  1268. /* move the 'window' down further */
  1269. wstart -= wend + 1;
  1270. start = 0;
  1271. if (wstart < 0)
  1272. break;
  1273. }
  1274. ret = 1;
  1275. err:
  1276. BN_CTX_end(ctx);
  1277. bn_check_top(r);
  1278. return ret;
  1279. }
  1280. /*
  1281. * This is a variant of modular exponentiation optimization that does
  1282. * parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
  1283. * in 52-bit binary redundant representation.
  1284. * If such instructions are not available, or input data size is not supported,
  1285. * it falls back to two BN_mod_exp_mont_consttime() calls.
  1286. */
  1287. int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
  1288. const BIGNUM *m1, BN_MONT_CTX *in_mont1,
  1289. BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
  1290. const BIGNUM *m2, BN_MONT_CTX *in_mont2,
  1291. BN_CTX *ctx)
  1292. {
  1293. int ret = 0;
  1294. #ifdef RSAZ_ENABLED
  1295. BN_MONT_CTX *mont1 = NULL;
  1296. BN_MONT_CTX *mont2 = NULL;
  1297. if (ossl_rsaz_avx512ifma_eligible() &&
  1298. (((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
  1299. (a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024)) ||
  1300. ((a1->top == 24) && (p1->top == 24) && (BN_num_bits(m1) == 1536) &&
  1301. (a2->top == 24) && (p2->top == 24) && (BN_num_bits(m2) == 1536)) ||
  1302. ((a1->top == 32) && (p1->top == 32) && (BN_num_bits(m1) == 2048) &&
  1303. (a2->top == 32) && (p2->top == 32) && (BN_num_bits(m2) == 2048)))) {
  1304. int topn = a1->top;
  1305. /* Modulus bits of |m1| and |m2| are equal */
  1306. int mod_bits = BN_num_bits(m1);
  1307. if (bn_wexpand(rr1, topn) == NULL)
  1308. goto err;
  1309. if (bn_wexpand(rr2, topn) == NULL)
  1310. goto err;
  1311. /* Ensure that montgomery contexts are initialized */
  1312. if (in_mont1 != NULL) {
  1313. mont1 = in_mont1;
  1314. } else {
  1315. if ((mont1 = BN_MONT_CTX_new()) == NULL)
  1316. goto err;
  1317. if (!BN_MONT_CTX_set(mont1, m1, ctx))
  1318. goto err;
  1319. }
  1320. if (in_mont2 != NULL) {
  1321. mont2 = in_mont2;
  1322. } else {
  1323. if ((mont2 = BN_MONT_CTX_new()) == NULL)
  1324. goto err;
  1325. if (!BN_MONT_CTX_set(mont2, m2, ctx))
  1326. goto err;
  1327. }
  1328. ret = ossl_rsaz_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d,
  1329. mont1->RR.d, mont1->n0[0],
  1330. rr2->d, a2->d, p2->d, m2->d,
  1331. mont2->RR.d, mont2->n0[0],
  1332. mod_bits);
  1333. rr1->top = topn;
  1334. rr1->neg = 0;
  1335. bn_correct_top(rr1);
  1336. bn_check_top(rr1);
  1337. rr2->top = topn;
  1338. rr2->neg = 0;
  1339. bn_correct_top(rr2);
  1340. bn_check_top(rr2);
  1341. goto err;
  1342. }
  1343. #endif
  1344. /* rr1 = a1^p1 mod m1 */
  1345. ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1);
  1346. /* rr2 = a2^p2 mod m2 */
  1347. ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2);
  1348. #ifdef RSAZ_ENABLED
  1349. err:
  1350. if (in_mont2 == NULL)
  1351. BN_MONT_CTX_free(mont2);
  1352. if (in_mont1 == NULL)
  1353. BN_MONT_CTX_free(mont1);
  1354. #endif
  1355. return ret;
  1356. }