123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- /*
- * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * According to NIST SP800-131A "Transitioning the use of cryptographic
- * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
- * allowed for signatures (Table 2) or key transport (Table 5). In the code
- * below any attempt to generate 1024 bit RSA keys will result in an error (Note
- * that digital signature verification can still use deprecated 1024 bit keys).
- *
- * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
- * must be generated before the module generates the RSA primes p and q.
- * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
- * 3072 bits only, the min/max total length of the auxiliary primes.
- * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
- * included here.
- */
- #include <stdio.h>
- #include <openssl/bn.h>
- #include "bn_local.h"
- #include "crypto/bn.h"
- #include "internal/nelem.h"
- #if BN_BITS2 == 64
- # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
- #else
- # define BN_DEF(lo, hi) lo, hi
- #endif
- /* 1 / sqrt(2) * 2^256, rounded up */
- static const BN_ULONG inv_sqrt_2_val[] = {
- BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
- BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
- };
- const BIGNUM ossl_bn_inv_sqrt_2 = {
- (BN_ULONG *)inv_sqrt_2_val,
- OSSL_NELEM(inv_sqrt_2_val),
- OSSL_NELEM(inv_sqrt_2_val),
- 0,
- BN_FLG_STATIC_DATA
- };
- /*
- * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin
- * required for generation of RSA aux primes (p1, p2, q1 and q2).
- */
- static int bn_rsa_fips186_5_aux_prime_MR_rounds(int nbits)
- {
- if (nbits >= 4096)
- return 44;
- if (nbits >= 3072)
- return 41;
- if (nbits >= 2048)
- return 38;
- return 0; /* Error */
- }
- /*
- * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin
- * required for generation of RSA primes (p and q)
- */
- static int bn_rsa_fips186_5_prime_MR_rounds(int nbits)
- {
- if (nbits >= 3072)
- return 4;
- if (nbits >= 2048)
- return 5;
- return 0; /* Error */
- }
- /*
- * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
- * (FIPS 186-5 has an entry for >= 4096 bits).
- *
- * Params:
- * nbits The key size in bits.
- * Returns:
- * The minimum size of the auxiliary primes or 0 if nbits is invalid.
- */
- static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
- {
- if (nbits >= 4096)
- return 201;
- if (nbits >= 3072)
- return 171;
- if (nbits >= 2048)
- return 141;
- return 0;
- }
- /*
- * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
- * len(q1) + len(q2) for p,q Probable Primes".
- * (FIPS 186-5 has an entry for >= 4096 bits).
- * Params:
- * nbits The key size in bits.
- * Returns:
- * The maximum length or 0 if nbits is invalid.
- */
- static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
- {
- if (nbits >= 4096)
- return 2030;
- if (nbits >= 3072)
- return 1518;
- if (nbits >= 2048)
- return 1007;
- return 0;
- }
- /*
- * Find the first odd integer that is a probable prime.
- *
- * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
- *
- * Params:
- * Xp1 The passed in starting point to find a probably prime.
- * p1 The returned probable prime (first odd integer >= Xp1)
- * ctx A BN_CTX object.
- * rounds The number of Miller Rabin rounds
- * cb An optional BIGNUM callback.
- * Returns: 1 on success otherwise it returns 0.
- */
- static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
- BIGNUM *p1, BN_CTX *ctx,
- int rounds,
- BN_GENCB *cb)
- {
- int ret = 0;
- int i = 0;
- int tmp = 0;
- if (BN_copy(p1, Xp1) == NULL)
- return 0;
- BN_set_flags(p1, BN_FLG_CONSTTIME);
- /* Find the first odd number >= Xp1 that is probably prime */
- for (;;) {
- i++;
- BN_GENCB_call(cb, 0, i);
- /* MR test with trial division */
- tmp = ossl_bn_check_generated_prime(p1, rounds, ctx, cb);
- if (tmp > 0)
- break;
- if (tmp < 0)
- goto err;
- /* Get next odd number */
- if (!BN_add_word(p1, 2))
- goto err;
- }
- BN_GENCB_call(cb, 2, i);
- ret = 1;
- err:
- return ret;
- }
- /*
- * Generate a probable prime (p or q).
- *
- * See FIPS 186-4 B.3.6 (Steps 4 & 5)
- *
- * Params:
- * p The returned probable prime.
- * Xpout An optionally returned random number used during generation of p.
- * p1, p2 The returned auxiliary primes. If NULL they are not returned.
- * Xp An optional passed in value (that is random number used during
- * generation of p).
- * Xp1, Xp2 Optional passed in values that are normally generated
- * internally. Used to find p1, p2.
- * nlen The bit length of the modulus (the key size).
- * e The public exponent.
- * ctx A BN_CTX object.
- * cb An optional BIGNUM callback.
- * Returns: 1 on success otherwise it returns 0.
- */
- int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
- BIGNUM *p1, BIGNUM *p2,
- const BIGNUM *Xp, const BIGNUM *Xp1,
- const BIGNUM *Xp2, int nlen,
- const BIGNUM *e, BN_CTX *ctx,
- BN_GENCB *cb)
- {
- int ret = 0;
- BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
- int bitlen, rounds;
- if (p == NULL || Xpout == NULL)
- return 0;
- BN_CTX_start(ctx);
- p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
- p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
- Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
- Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
- if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
- goto err;
- bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
- if (bitlen == 0)
- goto err;
- rounds = bn_rsa_fips186_5_aux_prime_MR_rounds(nlen);
- /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
- if (Xp1 == NULL) {
- /* Set the top and bottom bits to make it odd and the correct size */
- if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
- 0, ctx))
- goto err;
- }
- /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
- if (Xp2 == NULL) {
- /* Set the top and bottom bits to make it odd and the correct size */
- if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
- 0, ctx))
- goto err;
- }
- /* (Steps 4.2/5.2) - find first auxiliary probable primes */
- if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, rounds, cb)
- || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, rounds, cb))
- goto err;
- /* (Table B.1) auxiliary prime Max length check */
- if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
- bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
- goto err;
- /* (Steps 4.3/5.3) - generate prime */
- if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
- ctx, cb))
- goto err;
- ret = 1;
- err:
- /* Zeroize any internally generated values that are not returned */
- if (p1 == NULL)
- BN_clear(p1i);
- if (p2 == NULL)
- BN_clear(p2i);
- if (Xp1 == NULL)
- BN_clear(Xp1i);
- if (Xp2 == NULL)
- BN_clear(Xp2i);
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
- * prime numbers and the Chinese Remainder Theorem.
- *
- * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
- * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
- *
- * Params:
- * Y The returned prime factor (private_prime_factor) of the modulus n.
- * X The returned random number used during generation of the prime factor.
- * Xin An optional passed in value for X used for testing purposes.
- * r1 An auxiliary prime.
- * r2 An auxiliary prime.
- * nlen The desired length of n (the RSA modulus).
- * e The public exponent.
- * ctx A BN_CTX object.
- * cb An optional BIGNUM callback object.
- * Returns: 1 on success otherwise it returns 0.
- * Assumptions:
- * Y, X, r1, r2, e are not NULL.
- */
- int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
- const BIGNUM *r1, const BIGNUM *r2,
- int nlen, const BIGNUM *e,
- BN_CTX *ctx, BN_GENCB *cb)
- {
- int ret = 0;
- int i, imax, rounds;
- int bits = nlen >> 1;
- BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
- BIGNUM *base, *range;
- BN_CTX_start(ctx);
- base = BN_CTX_get(ctx);
- range = BN_CTX_get(ctx);
- R = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- r1r2x2 = BN_CTX_get(ctx);
- y1 = BN_CTX_get(ctx);
- r1x2 = BN_CTX_get(ctx);
- if (r1x2 == NULL)
- goto err;
- if (Xin != NULL && BN_copy(X, Xin) == NULL)
- goto err;
- /*
- * We need to generate a random number X in the range
- * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
- * We can rewrite that as:
- * base = 1/sqrt(2) * 2^(nlen/2)
- * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
- * X = base + random(range)
- * We only have the first 256 bit of 1/sqrt(2)
- */
- if (Xin == NULL) {
- if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
- goto err;
- if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
- bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
- || !BN_lshift(range, BN_value_one(), bits)
- || !BN_sub(range, range, base))
- goto err;
- }
- /*
- * (Step 1) GCD(2r1, r2) = 1.
- * Note: This algorithm was doing a gcd(2r1, r2)=1 test before doing an
- * mod_inverse(2r1, r2) which are effectively the same operation.
- * (The algorithm assumed that the gcd test would be faster). Since the
- * mod_inverse is currently faster than calling the constant time
- * BN_gcd(), the call to BN_gcd() has been omitted. The inverse result
- * is used further down.
- */
- if (!(BN_lshift1(r1x2, r1)
- && (BN_mod_inverse(tmp, r1x2, r2, ctx) != NULL)
- /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
- && (BN_mod_inverse(R, r2, r1x2, ctx) != NULL)
- && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
- && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
- && BN_sub(R, R, tmp)
- /* Calculate 2r1r2 */
- && BN_mul(r1r2x2, r1x2, r2, ctx)))
- goto err;
- /* Make positive by adding the modulus */
- if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
- goto err;
- /*
- * In FIPS 186-4 imax was set to 5 * nlen/2.
- * Analysis by Allen Roginsky
- * (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
- * page 68) indicates this has a 1 in 2 million chance of failure.
- * The number has been updated to 20 * nlen/2 as used in
- * FIPS186-5 Appendix B.9 Step 9.
- */
- rounds = bn_rsa_fips186_5_prime_MR_rounds(nlen);
- imax = 20 * bits; /* max = 20/2 * nbits */
- for (;;) {
- if (Xin == NULL) {
- /*
- * (Step 3) Choose Random X such that
- * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
- */
- if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
- goto err;
- }
- /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
- if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
- goto err;
- /* (Step 5) */
- i = 0;
- for (;;) {
- /* (Step 6) */
- if (BN_num_bits(Y) > bits) {
- if (Xin == NULL)
- break; /* Randomly Generated X so Go back to Step 3 */
- else
- goto err; /* X is not random so it will always fail */
- }
- BN_GENCB_call(cb, 0, 2);
- /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
- if (BN_copy(y1, Y) == NULL
- || !BN_sub_word(y1, 1))
- goto err;
- if (BN_are_coprime(y1, e, ctx)) {
- int rv = ossl_bn_check_generated_prime(Y, rounds, ctx, cb);
- if (rv > 0)
- goto end;
- if (rv < 0)
- goto err;
- }
- /* (Step 8-10) */
- if (++i >= imax) {
- ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
- goto err;
- }
- if (!BN_add(Y, Y, r1r2x2))
- goto err;
- }
- }
- end:
- ret = 1;
- BN_GENCB_call(cb, 3, 0);
- err:
- BN_clear(y1);
- BN_CTX_end(ctx);
- return ret;
- }
|