123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 |
- #! /usr/bin/env perl
- # Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the Apache License 2.0 (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- # ====================================================================
- # [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- # At some point it became apparent that the original SSLeay RC4
- # assembler implementation performs suboptimally on latest IA-32
- # microarchitectures. After re-tuning performance has changed as
- # following:
- #
- # Pentium -10%
- # Pentium III +12%
- # AMD +50%(*)
- # P4 +250%(**)
- #
- # (*) This number is actually a trade-off:-) It's possible to
- # achieve +72%, but at the cost of -48% off PIII performance.
- # In other words code performing further 13% faster on AMD
- # would perform almost 2 times slower on Intel PIII...
- # For reference! This code delivers ~80% of rc4-amd64.pl
- # performance on the same Opteron machine.
- # (**) This number requires compressed key schedule set up by
- # RC4_set_key [see commentary below for further details].
- # May 2011
- #
- # Optimize for Core2 and Westmere [and incidentally Opteron]. Current
- # performance in cycles per processed byte (less is better) and
- # improvement relative to previous version of this module is:
- #
- # Pentium 10.2 # original numbers
- # Pentium III 7.8(*)
- # Intel P4 7.5
- #
- # Opteron 6.1/+20% # new MMX numbers
- # Core2 5.3/+67%(**)
- # Westmere 5.1/+94%(**)
- # Sandy Bridge 5.0/+8%
- # Atom 12.6/+6%
- # VIA Nano 6.4/+9%
- # Ivy Bridge 4.9/±0%
- # Bulldozer 4.9/+15%
- #
- # (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
- # but this specific code performs poorly on Core2. And vice
- # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
- # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
- # [anymore], I chose to discard PIII-specific code path and opt
- # for original IALU-only code, which is why MMX/SSE code path
- # is guarded by SSE2 bit (see below), not MMX/SSE.
- # (**) Performance vs. block size on Core2 and Westmere had a maximum
- # at ... 64 bytes block size. And it was quite a maximum, 40-60%
- # in comparison to largest 8KB block size. Above improvement
- # coefficients are for the largest block size.
- $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
- push(@INC,"${dir}","${dir}../../perlasm");
- require "x86asm.pl";
- $output = pop and open STDOUT,">$output";
- &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
- $xx="eax";
- $yy="ebx";
- $tx="ecx";
- $ty="edx";
- $inp="esi";
- $out="ebp";
- $dat="edi";
- sub RC4_loop {
- my $i=shift;
- my $func = ($i==0)?*mov:*or;
- &add (&LB($yy),&LB($tx));
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &mov (&DWP(0,$dat,$xx,4),$ty);
- &add ($ty,$tx);
- &inc (&LB($xx));
- &and ($ty,0xff);
- &ror ($out,8) if ($i!=0);
- if ($i<3) {
- &mov ($tx,&DWP(0,$dat,$xx,4));
- } else {
- &mov ($tx,&wparam(3)); # reload [re-biased] out
- }
- &$func ($out,&DWP(0,$dat,$ty,4));
- }
- if ($alt=0) {
- # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
- # but ~40% slower on Core2 and Westmere... Attempt to add movz
- # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
- # on Core2 with movz it's almost 20% slower than below alternative
- # code... Yes, it's a total mess...
- my @XX=($xx,$out);
- $RC4_loop_mmx = sub { # SSE actually...
- my $i=shift;
- my $j=$i<=0?0:$i>>1;
- my $mm=$i<=0?"mm0":"mm".($i&1);
- &add (&LB($yy),&LB($tx));
- &lea (@XX[1],&DWP(1,@XX[0]));
- &pxor ("mm2","mm0") if ($i==0);
- &psllq ("mm1",8) if ($i==0);
- &and (@XX[1],0xff);
- &pxor ("mm0","mm0") if ($i<=0);
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &pxor ("mm1","mm2") if ($i==0);
- &mov (&DWP(0,$dat,$XX[0],4),$ty);
- &add (&LB($ty),&LB($tx));
- &movd (@XX[0],"mm7") if ($i==0);
- &mov ($tx,&DWP(0,$dat,@XX[1],4));
- &pxor ("mm1","mm1") if ($i==1);
- &movq ("mm2",&QWP(0,$inp)) if ($i==1);
- &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
- &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
- push (@XX,shift(@XX)) if ($i>=0);
- }
- } else {
- # Using pinsrw here improves performance on Intel CPUs by 2-3%, but
- # brings down AMD by 7%...
- $RC4_loop_mmx = sub {
- my $i=shift;
- &add (&LB($yy),&LB($tx));
- &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &mov (&DWP(0,$dat,$xx,4),$ty);
- &inc ($xx);
- &add ($ty,$tx);
- &movz ($xx,&LB($xx)); # (*)
- &movz ($ty,&LB($ty)); # (*)
- &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
- &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
- &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
- # (*) This is the key to Core2 and Westmere performance.
- # Without movz out-of-order execution logic confuses
- # itself and fails to reorder loads and stores. Problem
- # appears to be fixed in Sandy Bridge...
- }
- }
- &external_label("OPENSSL_ia32cap_P");
- # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
- &function_begin("RC4");
- &mov ($dat,&wparam(0)); # load key schedule pointer
- &mov ($ty, &wparam(1)); # load len
- &mov ($inp,&wparam(2)); # load inp
- &mov ($out,&wparam(3)); # load out
- &xor ($xx,$xx); # avoid partial register stalls
- &xor ($yy,$yy);
- &cmp ($ty,0); # safety net
- &je (&label("abort"));
- &mov (&LB($xx),&BP(0,$dat)); # load key->x
- &mov (&LB($yy),&BP(4,$dat)); # load key->y
- &add ($dat,8);
- &lea ($tx,&DWP(0,$inp,$ty));
- &sub ($out,$inp); # re-bias out
- &mov (&wparam(1),$tx); # save input+len
- &inc (&LB($xx));
- # detect compressed key schedule...
- &cmp (&DWP(256,$dat),-1);
- &je (&label("RC4_CHAR"));
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &and ($ty,-4); # how many 4-byte chunks?
- &jz (&label("loop1"));
- &mov (&wparam(3),$out); # $out as accumulator in these loops
- if ($x86only) {
- &jmp (&label("go4loop4"));
- } else {
- &test ($ty,-8);
- &jz (&label("go4loop4"));
- &picmeup($out,"OPENSSL_ia32cap_P");
- &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
- &jnc (&label("go4loop4"));
- &mov ($out,&wparam(3)) if (!$alt);
- &movd ("mm7",&wparam(3)) if ($alt);
- &and ($ty,-8);
- &lea ($ty,&DWP(-8,$inp,$ty));
- &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
- &$RC4_loop_mmx(-1);
- &jmp(&label("loop_mmx_enter"));
- &set_label("loop_mmx",16);
- &$RC4_loop_mmx(0);
- &set_label("loop_mmx_enter");
- for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
- &mov ($ty,$yy);
- &xor ($yy,$yy); # this is second key to Core2
- &mov (&LB($yy),&LB($ty)); # and Westmere performance...
- &cmp ($inp,&DWP(-4,$dat));
- &lea ($inp,&DWP(8,$inp));
- &jb (&label("loop_mmx"));
- if ($alt) {
- &movd ($out,"mm7");
- &pxor ("mm2","mm0");
- &psllq ("mm1",8);
- &pxor ("mm1","mm2");
- &movq (&QWP(-8,$out,$inp),"mm1");
- } else {
- &psllq ("mm1",56);
- &pxor ("mm2","mm1");
- &movq (&QWP(-8,$out,$inp),"mm2");
- }
- &emms ();
- &cmp ($inp,&wparam(1)); # compare to input+len
- &je (&label("done"));
- &jmp (&label("loop1"));
- }
- &set_label("go4loop4",16);
- &lea ($ty,&DWP(-4,$inp,$ty));
- &mov (&wparam(2),$ty); # save input+(len/4)*4-4
- &set_label("loop4");
- for ($i=0;$i<4;$i++) { RC4_loop($i); }
- &ror ($out,8);
- &xor ($out,&DWP(0,$inp));
- &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
- &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
- &lea ($inp,&DWP(4,$inp));
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &jb (&label("loop4"));
- &cmp ($inp,&wparam(1)); # compare to input+len
- &je (&label("done"));
- &mov ($out,&wparam(3)); # restore $out
- &set_label("loop1",16);
- &add (&LB($yy),&LB($tx));
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &mov (&DWP(0,$dat,$xx,4),$ty);
- &add ($ty,$tx);
- &inc (&LB($xx));
- &and ($ty,0xff);
- &mov ($ty,&DWP(0,$dat,$ty,4));
- &xor (&LB($ty),&BP(0,$inp));
- &lea ($inp,&DWP(1,$inp));
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &cmp ($inp,&wparam(1)); # compare to input+len
- &mov (&BP(-1,$out,$inp),&LB($ty));
- &jb (&label("loop1"));
- &jmp (&label("done"));
- # this is essentially Intel P4 specific codepath...
- &set_label("RC4_CHAR",16);
- &movz ($tx,&BP(0,$dat,$xx));
- # strangely enough unrolled loop performs over 20% slower...
- &set_label("cloop1");
- &add (&LB($yy),&LB($tx));
- &movz ($ty,&BP(0,$dat,$yy));
- &mov (&BP(0,$dat,$yy),&LB($tx));
- &mov (&BP(0,$dat,$xx),&LB($ty));
- &add (&LB($ty),&LB($tx));
- &movz ($ty,&BP(0,$dat,$ty));
- &add (&LB($xx),1);
- &xor (&LB($ty),&BP(0,$inp));
- &lea ($inp,&DWP(1,$inp));
- &movz ($tx,&BP(0,$dat,$xx));
- &cmp ($inp,&wparam(1));
- &mov (&BP(-1,$out,$inp),&LB($ty));
- &jb (&label("cloop1"));
- &set_label("done");
- &dec (&LB($xx));
- &mov (&DWP(-4,$dat),$yy); # save key->y
- &mov (&BP(-8,$dat),&LB($xx)); # save key->x
- &set_label("abort");
- &function_end("RC4");
- ########################################################################
- $inp="esi";
- $out="edi";
- $idi="ebp";
- $ido="ecx";
- $idx="edx";
- # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
- &function_begin("RC4_set_key");
- &mov ($out,&wparam(0)); # load key
- &mov ($idi,&wparam(1)); # load len
- &mov ($inp,&wparam(2)); # load data
- &picmeup($idx,"OPENSSL_ia32cap_P");
- &lea ($out,&DWP(2*4,$out)); # &key->data
- &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
- &neg ($idi);
- &xor ("eax","eax");
- &mov (&DWP(-4,$out),$idi); # borrow key->y
- &bt (&DWP(0,$idx),20); # check for bit#20
- &jc (&label("c1stloop"));
- &set_label("w1stloop",16);
- &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
- &add (&LB("eax"),1); # i++;
- &jnc (&label("w1stloop"));
- &xor ($ido,$ido);
- &xor ($idx,$idx);
- &set_label("w2ndloop",16);
- &mov ("eax",&DWP(0,$out,$ido,4));
- &add (&LB($idx),&BP(0,$inp,$idi));
- &add (&LB($idx),&LB("eax"));
- &add ($idi,1);
- &mov ("ebx",&DWP(0,$out,$idx,4));
- &jnz (&label("wnowrap"));
- &mov ($idi,&DWP(-4,$out));
- &set_label("wnowrap");
- &mov (&DWP(0,$out,$idx,4),"eax");
- &mov (&DWP(0,$out,$ido,4),"ebx");
- &add (&LB($ido),1);
- &jnc (&label("w2ndloop"));
- &jmp (&label("exit"));
- # Unlike all other x86 [and x86_64] implementations, Intel P4 core
- # [including EM64T] was found to perform poorly with above "32-bit" key
- # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
- # assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
- # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
- # schedule for x86[_64], because non-P4 implementations suffer from
- # significant performance losses then, e.g. PIII exhibits >2x
- # deterioration, and so does Opteron. In order to assure optimal
- # all-round performance, we detect P4 at run-time and set up compressed
- # key schedule, which is recognized by RC4 procedure.
- &set_label("c1stloop",16);
- &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
- &add (&LB("eax"),1); # i++;
- &jnc (&label("c1stloop"));
- &xor ($ido,$ido);
- &xor ($idx,$idx);
- &xor ("ebx","ebx");
- &set_label("c2ndloop",16);
- &mov (&LB("eax"),&BP(0,$out,$ido));
- &add (&LB($idx),&BP(0,$inp,$idi));
- &add (&LB($idx),&LB("eax"));
- &add ($idi,1);
- &mov (&LB("ebx"),&BP(0,$out,$idx));
- &jnz (&label("cnowrap"));
- &mov ($idi,&DWP(-4,$out));
- &set_label("cnowrap");
- &mov (&BP(0,$out,$idx),&LB("eax"));
- &mov (&BP(0,$out,$ido),&LB("ebx"));
- &add (&LB($ido),1);
- &jnc (&label("c2ndloop"));
- &mov (&DWP(256,$out),-1); # mark schedule as compressed
- &set_label("exit");
- &xor ("eax","eax");
- &mov (&DWP(-8,$out),"eax"); # key->x=0;
- &mov (&DWP(-4,$out),"eax"); # key->y=0;
- &function_end("RC4_set_key");
- # const char *RC4_options(void);
- &function_begin_B("RC4_options");
- &call (&label("pic_point"));
- &set_label("pic_point");
- &blindpop("eax");
- &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
- &picmeup("edx","OPENSSL_ia32cap_P");
- &mov ("edx",&DWP(0,"edx"));
- &bt ("edx",20);
- &jc (&label("1xchar"));
- &bt ("edx",26);
- &jnc (&label("ret"));
- &add ("eax",25);
- &ret ();
- &set_label("1xchar");
- &add ("eax",12);
- &set_label("ret");
- &ret ();
- &set_label("opts",64);
- &asciz ("rc4(4x,int)");
- &asciz ("rc4(1x,char)");
- &asciz ("rc4(8x,mmx)");
- &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
- &align (64);
- &function_end_B("RC4_options");
- &asm_finish();
- close STDOUT or die "error closing STDOUT: $!";
|