123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- /*
- * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- /*
- * According to NIST SP800-131A "Transitioning the use of cryptographic
- * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
- * allowed for signatures (Table 2) or key transport (Table 5). In the code
- * below any attempt to generate 1024 bit RSA keys will result in an error (Note
- * that digital signature verification can still use deprecated 1024 bit keys).
- *
- * Also see FIPS1402IG A.14
- * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
- * must be generated before the module generates the RSA primes p and q.
- * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and
- * 3072 bits only, the min/max total length of the auxiliary primes.
- * When implementing the RSA signature generation algorithm
- * with other approved RSA modulus sizes, the vendor shall use the limitations
- * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of
- * FIPS 186-4 whose length does not exceed that of the implementation's RSA
- * modulus. In particular, when generating the primes for the 4096-bit RSA
- * modulus the limitations stated for the 3072-bit modulus shall apply.
- */
- #include <stdio.h>
- #include <openssl/bn.h>
- #include "bn_local.h"
- #include "crypto/bn.h"
- /*
- * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2".
- *
- * Params:
- * nbits The key size in bits.
- * Returns:
- * The minimum size of the auxiliary primes or 0 if nbits is invalid.
- */
- static int bn_rsa_fips186_4_aux_prime_min_size(int nbits)
- {
- if (nbits >= 3072)
- return 171;
- if (nbits == 2048)
- return 141;
- return 0;
- }
- /*
- * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and
- * len(q1) + len(q2) for p,q Probable Primes".
- *
- * Params:
- * nbits The key size in bits.
- * Returns:
- * The maximum length or 0 if nbits is invalid.
- */
- static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits)
- {
- if (nbits >= 3072)
- return 1518;
- if (nbits == 2048)
- return 1007;
- return 0;
- }
- /*
- * Find the first odd integer that is a probable prime.
- *
- * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
- *
- * Params:
- * Xp1 The passed in starting point to find a probably prime.
- * p1 The returned probable prime (first odd integer >= Xp1)
- * ctx A BN_CTX object.
- * cb An optional BIGNUM callback.
- * Returns: 1 on success otherwise it returns 0.
- */
- static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
- BIGNUM *p1, BN_CTX *ctx,
- BN_GENCB *cb)
- {
- int ret = 0;
- int i = 0;
- if (BN_copy(p1, Xp1) == NULL)
- return 0;
- /* Find the first odd number >= Xp1 that is probably prime */
- for(;;) {
- i++;
- BN_GENCB_call(cb, 0, i);
- /* MR test with trial division */
- if (BN_check_prime(p1, ctx, cb))
- break;
- /* Get next odd number */
- if (!BN_add_word(p1, 2))
- goto err;
- }
- BN_GENCB_call(cb, 2, i);
- ret = 1;
- err:
- return ret;
- }
- /*
- * Generate a probable prime (p or q).
- *
- * See FIPS 186-4 B.3.6 (Steps 4 & 5)
- *
- * Params:
- * p The returned probable prime.
- * Xpout An optionally returned random number used during generation of p.
- * p1, p2 The returned auxiliary primes. If NULL they are not returned.
- * Xp An optional passed in value (that is random number used during
- * generation of p).
- * Xp1, Xp2 Optional passed in values that are normally generated
- * internally. Used to find p1, p2.
- * nlen The bit length of the modulus (the key size).
- * e The public exponent.
- * ctx A BN_CTX object.
- * cb An optional BIGNUM callback.
- * Returns: 1 on success otherwise it returns 0.
- */
- int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
- BIGNUM *p1, BIGNUM *p2,
- const BIGNUM *Xp, const BIGNUM *Xp1,
- const BIGNUM *Xp2, int nlen,
- const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
- {
- int ret = 0;
- BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
- int bitlen;
- if (p == NULL || Xpout == NULL)
- return 0;
- BN_CTX_start(ctx);
- p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
- p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
- Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
- Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
- if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
- goto err;
- bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen);
- if (bitlen == 0)
- goto err;
- /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
- if (Xp1 == NULL) {
- /* Set the top and bottom bits to make it odd and the correct size */
- if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
- ctx))
- goto err;
- }
- /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
- if (Xp2 == NULL) {
- /* Set the top and bottom bits to make it odd and the correct size */
- if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
- ctx))
- goto err;
- }
- /* (Steps 4.2/5.2) - find first auxiliary probable primes */
- if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
- || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
- goto err;
- /* (Table B.1) auxiliary prime Max length check */
- if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
- bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen))
- goto err;
- /* (Steps 4.3/5.3) - generate prime */
- if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb))
- goto err;
- ret = 1;
- err:
- /* Zeroize any internally generated values that are not returned */
- if (p1 == NULL)
- BN_clear(p1i);
- if (p2 == NULL)
- BN_clear(p2i);
- if (Xp1 == NULL)
- BN_clear(Xp1i);
- if (Xp2 == NULL)
- BN_clear(Xp2i);
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
- * prime numbers and the Chinese Remainder Theorem.
- *
- * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
- * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
- *
- * Params:
- * Y The returned prime factor (private_prime_factor) of the modulus n.
- * X The returned random number used during generation of the prime factor.
- * Xin An optional passed in value for X used for testing purposes.
- * r1 An auxiliary prime.
- * r2 An auxiliary prime.
- * nlen The desired length of n (the RSA modulus).
- * e The public exponent.
- * ctx A BN_CTX object.
- * cb An optional BIGNUM callback object.
- * Returns: 1 on success otherwise it returns 0.
- * Assumptions:
- * Y, X, r1, r2, e are not NULL.
- */
- int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
- const BIGNUM *r1, const BIGNUM *r2, int nlen,
- const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
- {
- int ret = 0;
- int i, imax;
- int bits = nlen >> 1;
- BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
- BN_CTX_start(ctx);
- R = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- r1r2x2 = BN_CTX_get(ctx);
- y1 = BN_CTX_get(ctx);
- r1x2 = BN_CTX_get(ctx);
- if (r1x2 == NULL)
- goto err;
- if (Xin != NULL && BN_copy(X, Xin) == NULL)
- goto err;
- if (!(BN_lshift1(r1x2, r1)
- /* (Step 1) GCD(2r1, r2) = 1 */
- && BN_gcd(tmp, r1x2, r2, ctx)
- && BN_is_one(tmp)
- /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
- && BN_mod_inverse(R, r2, r1x2, ctx)
- && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
- && BN_mod_inverse(tmp, r1x2, r2, ctx)
- && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
- && BN_sub(R, R, tmp)
- /* Calculate 2r1r2 */
- && BN_mul(r1r2x2, r1x2, r2, ctx)))
- goto err;
- /* Make positive by adding the modulus */
- if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
- goto err;
- imax = 5 * bits; /* max = 5/2 * nbits */
- for (;;) {
- if (Xin == NULL) {
- /*
- * (Step 3) Choose Random X such that
- * sqrt(2) * 2^(nlen/2-1) < Random X < (2^(nlen/2)) - 1.
- *
- * For the lower bound:
- * sqrt(2) * 2^(nlen/2 - 1) == sqrt(2)/2 * 2^(nlen/2)
- * where sqrt(2)/2 = 0.70710678.. = 0.B504FC33F9DE...
- * so largest number will have B5... as the top byte
- * Setting the top 2 bits gives 0xC0.
- */
- if (!BN_priv_rand_ex(X, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY,
- ctx))
- goto end;
- }
- /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
- if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
- goto err;
- /* (Step 5) */
- i = 0;
- for (;;) {
- /* (Step 6) */
- if (BN_num_bits(Y) > bits) {
- if (Xin == NULL)
- break; /* Randomly Generated X so Go back to Step 3 */
- else
- goto err; /* X is not random so it will always fail */
- }
- BN_GENCB_call(cb, 0, 2);
- /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
- if (BN_copy(y1, Y) == NULL
- || !BN_sub_word(y1, 1)
- || !BN_gcd(tmp, y1, e, ctx))
- goto err;
- if (BN_is_one(tmp) && BN_check_prime(Y, ctx, cb))
- goto end;
- /* (Step 8-10) */
- if (++i >= imax || !BN_add(Y, Y, r1r2x2))
- goto err;
- }
- }
- end:
- ret = 1;
- BN_GENCB_call(cb, 3, 0);
- err:
- BN_clear(y1);
- BN_CTX_end(ctx);
- return ret;
- }
|