123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854 |
- /*
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #ifndef _GNU_SOURCE
- # define _GNU_SOURCE
- #endif
- #include "e_os.h"
- #include <stdio.h>
- #include "internal/cryptlib.h"
- #include <openssl/rand.h>
- #include <openssl/crypto.h>
- #include "rand_local.h"
- #include "crypto/rand.h"
- #include <stdio.h>
- #include "internal/dso.h"
- #ifdef __linux
- # include <sys/syscall.h>
- # ifdef DEVRANDOM_WAIT
- # include <sys/shm.h>
- # include <sys/utsname.h>
- # endif
- #endif
- #if defined(__FreeBSD__) && !defined(OPENSSL_SYS_UEFI)
- # include <sys/types.h>
- # include <sys/sysctl.h>
- # include <sys/param.h>
- #endif
- #if defined(__OpenBSD__) || defined(__NetBSD__)
- # include <sys/param.h>
- #endif
- #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
- || defined(__DJGPP__)
- # include <sys/types.h>
- # include <sys/stat.h>
- # include <fcntl.h>
- # include <unistd.h>
- # include <sys/time.h>
- static uint64_t get_time_stamp(void);
- static uint64_t get_timer_bits(void);
- /* Macro to convert two thirty two bit values into a sixty four bit one */
- # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
- /*
- * Check for the existence and support of POSIX timers. The standard
- * says that the _POSIX_TIMERS macro will have a positive value if they
- * are available.
- *
- * However, we want an additional constraint: that the timer support does
- * not require an extra library dependency. Early versions of glibc
- * require -lrt to be specified on the link line to access the timers,
- * so this needs to be checked for.
- *
- * It is worse because some libraries define __GLIBC__ but don't
- * support the version testing macro (e.g. uClibc). This means
- * an extra check is needed.
- *
- * The final condition is:
- * "have posix timers and either not glibc or glibc without -lrt"
- *
- * The nested #if sequences are required to avoid using a parameterised
- * macro that might be undefined.
- */
- # undef OSSL_POSIX_TIMER_OKAY
- # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
- # if defined(__GLIBC__)
- # if defined(__GLIBC_PREREQ)
- # if __GLIBC_PREREQ(2, 17)
- # define OSSL_POSIX_TIMER_OKAY
- # endif
- # endif
- # else
- # define OSSL_POSIX_TIMER_OKAY
- # endif
- # endif
- #endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
- #if defined(OPENSSL_RAND_SEED_NONE)
- /* none means none. this simplifies the following logic */
- # undef OPENSSL_RAND_SEED_OS
- # undef OPENSSL_RAND_SEED_GETRANDOM
- # undef OPENSSL_RAND_SEED_LIBRANDOM
- # undef OPENSSL_RAND_SEED_DEVRANDOM
- # undef OPENSSL_RAND_SEED_RDTSC
- # undef OPENSSL_RAND_SEED_RDCPU
- # undef OPENSSL_RAND_SEED_EGD
- #endif
- #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
- # error "UEFI only supports seeding NONE"
- #endif
- #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
- || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
- || defined(OPENSSL_SYS_UEFI))
- # if defined(OPENSSL_SYS_VOS)
- # ifndef OPENSSL_RAND_SEED_OS
- # error "Unsupported seeding method configured; must be os"
- # endif
- # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
- # error "Unsupported HP-PA and IA32 at the same time."
- # endif
- # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
- # error "Must have one of HP-PA or IA32"
- # endif
- /*
- * The following algorithm repeatedly samples the real-time clock (RTC) to
- * generate a sequence of unpredictable data. The algorithm relies upon the
- * uneven execution speed of the code (due to factors such as cache misses,
- * interrupts, bus activity, and scheduling) and upon the rather large
- * relative difference between the speed of the clock and the rate at which
- * it can be read. If it is ported to an environment where execution speed
- * is more constant or where the RTC ticks at a much slower rate, or the
- * clock can be read with fewer instructions, it is likely that the results
- * would be far more predictable. This should only be used for legacy
- * platforms.
- *
- * As a precaution, we assume only 2 bits of entropy per byte.
- */
- size_t rand_pool_acquire_entropy(RAND_POOL *pool)
- {
- short int code;
- int i, k;
- size_t bytes_needed;
- struct timespec ts;
- unsigned char v;
- # ifdef OPENSSL_SYS_VOS_HPPA
- long duration;
- extern void s$sleep(long *_duration, short int *_code);
- # else
- long long duration;
- extern void s$sleep2(long long *_duration, short int *_code);
- # endif
- bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
- for (i = 0; i < bytes_needed; i++) {
- /*
- * burn some cpu; hope for interrupts, cache collisions, bus
- * interference, etc.
- */
- for (k = 0; k < 99; k++)
- ts.tv_nsec = random();
- # ifdef OPENSSL_SYS_VOS_HPPA
- /* sleep for 1/1024 of a second (976 us). */
- duration = 1;
- s$sleep(&duration, &code);
- # else
- /* sleep for 1/65536 of a second (15 us). */
- duration = 1;
- s$sleep2(&duration, &code);
- # endif
- /* Get wall clock time, take 8 bits. */
- clock_gettime(CLOCK_REALTIME, &ts);
- v = (unsigned char)(ts.tv_nsec & 0xFF);
- rand_pool_add(pool, arg, &v, sizeof(v) , 2);
- }
- return rand_pool_entropy_available(pool);
- }
- void rand_pool_cleanup(void)
- {
- }
- void rand_pool_keep_random_devices_open(int keep)
- {
- }
- # else
- # if defined(OPENSSL_RAND_SEED_EGD) && \
- (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
- # error "Seeding uses EGD but EGD is turned off or no device given"
- # endif
- # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
- # error "Seeding uses urandom but DEVRANDOM is not configured"
- # endif
- # if defined(OPENSSL_RAND_SEED_OS)
- # if !defined(DEVRANDOM)
- # error "OS seeding requires DEVRANDOM to be configured"
- # endif
- # define OPENSSL_RAND_SEED_GETRANDOM
- # define OPENSSL_RAND_SEED_DEVRANDOM
- # endif
- # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
- # error "librandom not (yet) supported"
- # endif
- # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
- /*
- * sysctl_random(): Use sysctl() to read a random number from the kernel
- * Returns the number of bytes returned in buf on success, -1 on failure.
- */
- static ssize_t sysctl_random(char *buf, size_t buflen)
- {
- int mib[2];
- size_t done = 0;
- size_t len;
- /*
- * Note: sign conversion between size_t and ssize_t is safe even
- * without a range check, see comment in syscall_random()
- */
- /*
- * On FreeBSD old implementations returned longs, newer versions support
- * variable sizes up to 256 byte. The code below would not work properly
- * when the sysctl returns long and we want to request something not a
- * multiple of longs, which should never be the case.
- */
- if (!ossl_assert(buflen % sizeof(long) == 0)) {
- errno = EINVAL;
- return -1;
- }
- /*
- * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
- * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
- * it returns a variable number of bytes with the current version supporting
- * up to 256 bytes.
- * Just return an error on older NetBSD versions.
- */
- #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
- errno = ENOSYS;
- return -1;
- #endif
- mib[0] = CTL_KERN;
- mib[1] = KERN_ARND;
- do {
- len = buflen;
- if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
- return done > 0 ? done : -1;
- done += len;
- buf += len;
- buflen -= len;
- } while (buflen > 0);
- return done;
- }
- # endif
- # if defined(OPENSSL_RAND_SEED_GETRANDOM)
- # if defined(__linux) && !defined(__NR_getrandom)
- # if defined(__arm__)
- # define __NR_getrandom (__NR_SYSCALL_BASE+384)
- # elif defined(__i386__)
- # define __NR_getrandom 355
- # elif defined(__x86_64__)
- # if defined(__ILP32__)
- # define __NR_getrandom (__X32_SYSCALL_BIT + 318)
- # else
- # define __NR_getrandom 318
- # endif
- # elif defined(__xtensa__)
- # define __NR_getrandom 338
- # elif defined(__s390__) || defined(__s390x__)
- # define __NR_getrandom 349
- # elif defined(__bfin__)
- # define __NR_getrandom 389
- # elif defined(__powerpc__)
- # define __NR_getrandom 359
- # elif defined(__mips__) || defined(__mips64)
- # if _MIPS_SIM == _MIPS_SIM_ABI32
- # define __NR_getrandom (__NR_Linux + 353)
- # elif _MIPS_SIM == _MIPS_SIM_ABI64
- # define __NR_getrandom (__NR_Linux + 313)
- # elif _MIPS_SIM == _MIPS_SIM_NABI32
- # define __NR_getrandom (__NR_Linux + 317)
- # endif
- # elif defined(__hppa__)
- # define __NR_getrandom (__NR_Linux + 339)
- # elif defined(__sparc__)
- # define __NR_getrandom 347
- # elif defined(__ia64__)
- # define __NR_getrandom 1339
- # elif defined(__alpha__)
- # define __NR_getrandom 511
- # elif defined(__sh__)
- # if defined(__SH5__)
- # define __NR_getrandom 373
- # else
- # define __NR_getrandom 384
- # endif
- # elif defined(__avr32__)
- # define __NR_getrandom 317
- # elif defined(__microblaze__)
- # define __NR_getrandom 385
- # elif defined(__m68k__)
- # define __NR_getrandom 352
- # elif defined(__cris__)
- # define __NR_getrandom 356
- # elif defined(__aarch64__)
- # define __NR_getrandom 278
- # else /* generic */
- # define __NR_getrandom 278
- # endif
- # endif
- /*
- * syscall_random(): Try to get random data using a system call
- * returns the number of bytes returned in buf, or < 0 on error.
- */
- static ssize_t syscall_random(void *buf, size_t buflen)
- {
- /*
- * Note: 'buflen' equals the size of the buffer which is used by the
- * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
- *
- * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
- *
- * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
- * between size_t and ssize_t is safe even without a range check.
- */
- /*
- * Do runtime detection to find getentropy().
- *
- * Known OSs that should support this:
- * - Darwin since 16 (OSX 10.12, IOS 10.0).
- * - Solaris since 11.3
- * - OpenBSD since 5.6
- * - Linux since 3.17 with glibc 2.25
- * - FreeBSD since 12.0 (1200061)
- */
- # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
- extern int getentropy(void *buffer, size_t length) __attribute__((weak));
- if (getentropy != NULL)
- return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
- # elif !defined(FIPS_MODE)
- union {
- void *p;
- int (*f)(void *buffer, size_t length);
- } p_getentropy;
- /*
- * We could cache the result of the lookup, but we normally don't
- * call this function often.
- */
- ERR_set_mark();
- p_getentropy.p = DSO_global_lookup("getentropy");
- ERR_pop_to_mark();
- if (p_getentropy.p != NULL)
- return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
- # endif
- /* Linux supports this since version 3.17 */
- # if defined(__linux) && defined(__NR_getrandom)
- return syscall(__NR_getrandom, buf, buflen, 0);
- # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
- return sysctl_random(buf, buflen);
- # else
- errno = ENOSYS;
- return -1;
- # endif
- }
- # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
- # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
- static const char *random_device_paths[] = { DEVRANDOM };
- static struct random_device {
- int fd;
- dev_t dev;
- ino_t ino;
- mode_t mode;
- dev_t rdev;
- } random_devices[OSSL_NELEM(random_device_paths)];
- static int keep_random_devices_open = 1;
- # if defined(__linux) && defined(DEVRANDOM_WAIT)
- static void *shm_addr;
- # if !defined(FIPS_MODE)
- static void cleanup_shm(void)
- {
- shmdt(shm_addr);
- }
- # endif
- /*
- * Ensure that the system randomness source has been adequately seeded.
- * This is done by having the first start of libcrypto, wait until the device
- * /dev/random becomes able to supply a byte of entropy. Subsequent starts
- * of the library and later reseedings do not need to do this.
- */
- static int wait_random_seeded(void)
- {
- static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
- static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
- int kernel[2];
- int shm_id, fd, r;
- char c, *p;
- struct utsname un;
- fd_set fds;
- if (!seeded) {
- /* See if anything has created the global seeded indication */
- if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
- /*
- * Check the kernel's version and fail if it is too recent.
- *
- * Linux kernels from 4.8 onwards do not guarantee that
- * /dev/urandom is properly seeded when /dev/random becomes
- * readable. However, such kernels support the getentropy(2)
- * system call and this should always succeed which renders
- * this alternative but essentially identical source moot.
- */
- if (uname(&un) == 0) {
- kernel[0] = atoi(un.release);
- p = strchr(un.release, '.');
- kernel[1] = p == NULL ? 0 : atoi(p + 1);
- if (kernel[0] > kernel_version[0]
- || (kernel[0] == kernel_version[0]
- && kernel[1] >= kernel_version[1])) {
- return 0;
- }
- }
- /* Open /dev/random and wait for it to be readable */
- if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
- if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
- FD_ZERO(&fds);
- FD_SET(fd, &fds);
- while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
- && errno == EINTR);
- } else {
- while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
- }
- close(fd);
- if (r == 1) {
- seeded = 1;
- /* Create the shared memory indicator */
- shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
- IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
- }
- }
- }
- if (shm_id != -1) {
- seeded = 1;
- /*
- * Map the shared memory to prevent its premature destruction.
- * If this call fails, it isn't a big problem.
- */
- shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
- # ifndef FIPS_MODE
- /* TODO 3.0: The FIPS provider doesn't have OPENSSL_atexit */
- if (shm_addr != (void *)-1)
- OPENSSL_atexit(&cleanup_shm);
- # endif
- }
- }
- return seeded;
- }
- # else /* defined __linux */
- static int wait_random_seeded(void)
- {
- return 1;
- }
- # endif
- /*
- * Verify that the file descriptor associated with the random source is
- * still valid. The rationale for doing this is the fact that it is not
- * uncommon for daemons to close all open file handles when daemonizing.
- * So the handle might have been closed or even reused for opening
- * another file.
- */
- static int check_random_device(struct random_device * rd)
- {
- struct stat st;
- return rd->fd != -1
- && fstat(rd->fd, &st) != -1
- && rd->dev == st.st_dev
- && rd->ino == st.st_ino
- && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
- && rd->rdev == st.st_rdev;
- }
- /*
- * Open a random device if required and return its file descriptor or -1 on error
- */
- static int get_random_device(size_t n)
- {
- struct stat st;
- struct random_device * rd = &random_devices[n];
- /* reuse existing file descriptor if it is (still) valid */
- if (check_random_device(rd))
- return rd->fd;
- /* open the random device ... */
- if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
- return rd->fd;
- /* ... and cache its relevant stat(2) data */
- if (fstat(rd->fd, &st) != -1) {
- rd->dev = st.st_dev;
- rd->ino = st.st_ino;
- rd->mode = st.st_mode;
- rd->rdev = st.st_rdev;
- } else {
- close(rd->fd);
- rd->fd = -1;
- }
- return rd->fd;
- }
- /*
- * Close a random device making sure it is a random device
- */
- static void close_random_device(size_t n)
- {
- struct random_device * rd = &random_devices[n];
- if (check_random_device(rd))
- close(rd->fd);
- rd->fd = -1;
- }
- int rand_pool_init(void)
- {
- size_t i;
- for (i = 0; i < OSSL_NELEM(random_devices); i++)
- random_devices[i].fd = -1;
- return 1;
- }
- void rand_pool_cleanup(void)
- {
- size_t i;
- for (i = 0; i < OSSL_NELEM(random_devices); i++)
- close_random_device(i);
- }
- void rand_pool_keep_random_devices_open(int keep)
- {
- if (!keep)
- rand_pool_cleanup();
- keep_random_devices_open = keep;
- }
- # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
- int rand_pool_init(void)
- {
- return 1;
- }
- void rand_pool_cleanup(void)
- {
- }
- void rand_pool_keep_random_devices_open(int keep)
- {
- }
- # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
- /*
- * Try the various seeding methods in turn, exit when successful.
- *
- * TODO(DRBG): If more than one entropy source is available, is it
- * preferable to stop as soon as enough entropy has been collected
- * (as favored by @rsalz) or should one rather be defensive and add
- * more entropy than requested and/or from different sources?
- *
- * Currently, the user can select multiple entropy sources in the
- * configure step, yet in practice only the first available source
- * will be used. A more flexible solution has been requested, but
- * currently it is not clear how this can be achieved without
- * overengineering the problem. There are many parameters which
- * could be taken into account when selecting the order and amount
- * of input from the different entropy sources (trust, quality,
- * possibility of blocking).
- */
- size_t rand_pool_acquire_entropy(RAND_POOL *pool)
- {
- # if defined(OPENSSL_RAND_SEED_NONE)
- return rand_pool_entropy_available(pool);
- # else
- size_t entropy_available;
- # if defined(OPENSSL_RAND_SEED_GETRANDOM)
- {
- size_t bytes_needed;
- unsigned char *buffer;
- ssize_t bytes;
- /* Maximum allowed number of consecutive unsuccessful attempts */
- int attempts = 3;
- bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
- while (bytes_needed != 0 && attempts-- > 0) {
- buffer = rand_pool_add_begin(pool, bytes_needed);
- bytes = syscall_random(buffer, bytes_needed);
- if (bytes > 0) {
- rand_pool_add_end(pool, bytes, 8 * bytes);
- bytes_needed -= bytes;
- attempts = 3; /* reset counter after successful attempt */
- } else if (bytes < 0 && errno != EINTR) {
- break;
- }
- }
- }
- entropy_available = rand_pool_entropy_available(pool);
- if (entropy_available > 0)
- return entropy_available;
- # endif
- # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
- {
- /* Not yet implemented. */
- }
- # endif
- # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
- if (wait_random_seeded()) {
- size_t bytes_needed;
- unsigned char *buffer;
- size_t i;
- bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
- for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
- i++) {
- ssize_t bytes = 0;
- /* Maximum number of consecutive unsuccessful attempts */
- int attempts = 3;
- const int fd = get_random_device(i);
- if (fd == -1)
- continue;
- while (bytes_needed != 0 && attempts-- > 0) {
- buffer = rand_pool_add_begin(pool, bytes_needed);
- bytes = read(fd, buffer, bytes_needed);
- if (bytes > 0) {
- rand_pool_add_end(pool, bytes, 8 * bytes);
- bytes_needed -= bytes;
- attempts = 3; /* reset counter on successful attempt */
- } else if (bytes < 0 && errno != EINTR) {
- break;
- }
- }
- if (bytes < 0 || !keep_random_devices_open)
- close_random_device(i);
- bytes_needed = rand_pool_bytes_needed(pool, 1);
- }
- entropy_available = rand_pool_entropy_available(pool);
- if (entropy_available > 0)
- return entropy_available;
- }
- # endif
- # if defined(OPENSSL_RAND_SEED_RDTSC)
- entropy_available = rand_acquire_entropy_from_tsc(pool);
- if (entropy_available > 0)
- return entropy_available;
- # endif
- # if defined(OPENSSL_RAND_SEED_RDCPU)
- entropy_available = rand_acquire_entropy_from_cpu(pool);
- if (entropy_available > 0)
- return entropy_available;
- # endif
- # if defined(OPENSSL_RAND_SEED_EGD)
- {
- static const char *paths[] = { DEVRANDOM_EGD, NULL };
- size_t bytes_needed;
- unsigned char *buffer;
- int i;
- bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
- for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
- size_t bytes = 0;
- int num;
- buffer = rand_pool_add_begin(pool, bytes_needed);
- num = RAND_query_egd_bytes(paths[i],
- buffer, (int)bytes_needed);
- if (num == (int)bytes_needed)
- bytes = bytes_needed;
- rand_pool_add_end(pool, bytes, 8 * bytes);
- bytes_needed = rand_pool_bytes_needed(pool, 1);
- }
- entropy_available = rand_pool_entropy_available(pool);
- if (entropy_available > 0)
- return entropy_available;
- }
- # endif
- return rand_pool_entropy_available(pool);
- # endif
- }
- # endif
- #endif
- #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
- || defined(__DJGPP__)
- int rand_pool_add_nonce_data(RAND_POOL *pool)
- {
- struct {
- pid_t pid;
- CRYPTO_THREAD_ID tid;
- uint64_t time;
- } data;
- /* Erase the entire structure including any padding */
- memset(&data, 0, sizeof(data));
- /*
- * Add process id, thread id, and a high resolution timestamp to
- * ensure that the nonce is unique with high probability for
- * different process instances.
- */
- data.pid = getpid();
- data.tid = CRYPTO_THREAD_get_current_id();
- data.time = get_time_stamp();
- return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
- }
- int rand_pool_add_additional_data(RAND_POOL *pool)
- {
- struct {
- int fork_id;
- CRYPTO_THREAD_ID tid;
- uint64_t time;
- } data;
- /* Erase the entire structure including any padding */
- memset(&data, 0, sizeof(data));
- /*
- * Add some noise from the thread id and a high resolution timer.
- * The fork_id adds some extra fork-safety.
- * The thread id adds a little randomness if the drbg is accessed
- * concurrently (which is the case for the <master> drbg).
- */
- data.fork_id = openssl_get_fork_id();
- data.tid = CRYPTO_THREAD_get_current_id();
- data.time = get_timer_bits();
- return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
- }
- /*
- * Get the current time with the highest possible resolution
- *
- * The time stamp is added to the nonce, so it is optimized for not repeating.
- * The current time is ideal for this purpose, provided the computer's clock
- * is synchronized.
- */
- static uint64_t get_time_stamp(void)
- {
- # if defined(OSSL_POSIX_TIMER_OKAY)
- {
- struct timespec ts;
- if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
- return TWO32TO64(ts.tv_sec, ts.tv_nsec);
- }
- # endif
- # if defined(__unix__) \
- || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
- {
- struct timeval tv;
- if (gettimeofday(&tv, NULL) == 0)
- return TWO32TO64(tv.tv_sec, tv.tv_usec);
- }
- # endif
- return time(NULL);
- }
- /*
- * Get an arbitrary timer value of the highest possible resolution
- *
- * The timer value is added as random noise to the additional data,
- * which is not considered a trusted entropy sourec, so any result
- * is acceptable.
- */
- static uint64_t get_timer_bits(void)
- {
- uint64_t res = OPENSSL_rdtsc();
- if (res != 0)
- return res;
- # if defined(__sun) || defined(__hpux)
- return gethrtime();
- # elif defined(_AIX)
- {
- timebasestruct_t t;
- read_wall_time(&t, TIMEBASE_SZ);
- return TWO32TO64(t.tb_high, t.tb_low);
- }
- # elif defined(OSSL_POSIX_TIMER_OKAY)
- {
- struct timespec ts;
- # ifdef CLOCK_BOOTTIME
- # define CLOCK_TYPE CLOCK_BOOTTIME
- # elif defined(_POSIX_MONOTONIC_CLOCK)
- # define CLOCK_TYPE CLOCK_MONOTONIC
- # else
- # define CLOCK_TYPE CLOCK_REALTIME
- # endif
- if (clock_gettime(CLOCK_TYPE, &ts) == 0)
- return TWO32TO64(ts.tv_sec, ts.tv_nsec);
- }
- # endif
- # if defined(__unix__) \
- || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
- {
- struct timeval tv;
- if (gettimeofday(&tv, NULL) == 0)
- return TWO32TO64(tv.tv_sec, tv.tv_usec);
- }
- # endif
- return time(NULL);
- }
- #endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
|