rsa_oaep.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. /*
  2. * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
  10. /*
  11. * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
  12. * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
  13. * proof for the original OAEP scheme, which EME-OAEP is based on. A new
  14. * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
  15. * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
  16. * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
  17. * for the underlying permutation: "partial-one-wayness" instead of
  18. * one-wayness. For the RSA function, this is an equivalent notion.
  19. */
  20. #include "internal/constant_time.h"
  21. #include <stdio.h>
  22. #include "internal/cryptlib.h"
  23. #include <openssl/bn.h>
  24. #include <openssl/evp.h>
  25. #include <openssl/rand.h>
  26. #include <openssl/sha.h>
  27. #include "rsa_local.h"
  28. int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
  29. const unsigned char *from, int flen,
  30. const unsigned char *param, int plen)
  31. {
  32. return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen,
  33. param, plen, NULL, NULL);
  34. }
  35. /*
  36. * Perform ihe padding as per NIST 800-56B 7.2.2.3
  37. * from (K) is the key material.
  38. * param (A) is the additional input.
  39. * Step numbers are included here but not in the constant time inverse below
  40. * to avoid complicating an already difficult enough function.
  41. */
  42. int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
  43. const unsigned char *from, int flen,
  44. const unsigned char *param, int plen,
  45. const EVP_MD *md, const EVP_MD *mgf1md)
  46. {
  47. int rv = 0;
  48. int i, emlen = tlen - 1;
  49. unsigned char *db, *seed;
  50. unsigned char *dbmask = NULL;
  51. unsigned char seedmask[EVP_MAX_MD_SIZE];
  52. int mdlen, dbmask_len = 0;
  53. if (md == NULL)
  54. md = EVP_sha1();
  55. if (mgf1md == NULL)
  56. mgf1md = md;
  57. mdlen = EVP_MD_size(md);
  58. /* step 2b: check KLen > nLen - 2 HLen - 2 */
  59. if (flen > emlen - 2 * mdlen - 1) {
  60. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
  61. RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
  62. return 0;
  63. }
  64. if (emlen < 2 * mdlen + 1) {
  65. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
  66. RSA_R_KEY_SIZE_TOO_SMALL);
  67. return 0;
  68. }
  69. /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
  70. to[0] = 0;
  71. seed = to + 1;
  72. db = to + mdlen + 1;
  73. /* step 3a: hash the additional input */
  74. if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
  75. goto err;
  76. /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
  77. memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
  78. /* step 3c: DB = HA || PS || 00000001 || K */
  79. db[emlen - flen - mdlen - 1] = 0x01;
  80. memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
  81. /* step 3d: generate random byte string */
  82. if (RAND_bytes(seed, mdlen) <= 0)
  83. goto err;
  84. dbmask_len = emlen - mdlen;
  85. dbmask = OPENSSL_malloc(dbmask_len);
  86. if (dbmask == NULL) {
  87. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
  88. goto err;
  89. }
  90. /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
  91. if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
  92. goto err;
  93. /* step 3f: maskedDB = DB XOR dbMask */
  94. for (i = 0; i < dbmask_len; i++)
  95. db[i] ^= dbmask[i];
  96. /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
  97. if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
  98. goto err;
  99. /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
  100. for (i = 0; i < mdlen; i++)
  101. seed[i] ^= seedmask[i];
  102. rv = 1;
  103. err:
  104. OPENSSL_cleanse(seedmask, sizeof(seedmask));
  105. OPENSSL_clear_free(dbmask, dbmask_len);
  106. return rv;
  107. }
  108. int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
  109. const unsigned char *from, int flen, int num,
  110. const unsigned char *param, int plen)
  111. {
  112. return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
  113. param, plen, NULL, NULL);
  114. }
  115. int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
  116. const unsigned char *from, int flen,
  117. int num, const unsigned char *param,
  118. int plen, const EVP_MD *md,
  119. const EVP_MD *mgf1md)
  120. {
  121. int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
  122. unsigned int good = 0, found_one_byte, mask;
  123. const unsigned char *maskedseed, *maskeddb;
  124. /*
  125. * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
  126. * Y || maskedSeed || maskedDB
  127. */
  128. unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
  129. phash[EVP_MAX_MD_SIZE];
  130. int mdlen;
  131. if (md == NULL)
  132. md = EVP_sha1();
  133. if (mgf1md == NULL)
  134. mgf1md = md;
  135. mdlen = EVP_MD_size(md);
  136. if (tlen <= 0 || flen <= 0)
  137. return -1;
  138. /*
  139. * |num| is the length of the modulus; |flen| is the length of the
  140. * encoded message. Therefore, for any |from| that was obtained by
  141. * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
  142. * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
  143. * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
  144. * This does not leak any side-channel information.
  145. */
  146. if (num < flen || num < 2 * mdlen + 2) {
  147. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
  148. RSA_R_OAEP_DECODING_ERROR);
  149. return -1;
  150. }
  151. dblen = num - mdlen - 1;
  152. db = OPENSSL_malloc(dblen);
  153. if (db == NULL) {
  154. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
  155. goto cleanup;
  156. }
  157. em = OPENSSL_malloc(num);
  158. if (em == NULL) {
  159. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
  160. ERR_R_MALLOC_FAILURE);
  161. goto cleanup;
  162. }
  163. /*
  164. * Caller is encouraged to pass zero-padded message created with
  165. * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
  166. * bounds, it's impossible to have an invariant memory access pattern
  167. * in case |from| was not zero-padded in advance.
  168. */
  169. for (from += flen, em += num, i = 0; i < num; i++) {
  170. mask = ~constant_time_is_zero(flen);
  171. flen -= 1 & mask;
  172. from -= 1 & mask;
  173. *--em = *from & mask;
  174. }
  175. /*
  176. * The first byte must be zero, however we must not leak if this is
  177. * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
  178. * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
  179. */
  180. good = constant_time_is_zero(em[0]);
  181. maskedseed = em + 1;
  182. maskeddb = em + 1 + mdlen;
  183. if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
  184. goto cleanup;
  185. for (i = 0; i < mdlen; i++)
  186. seed[i] ^= maskedseed[i];
  187. if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
  188. goto cleanup;
  189. for (i = 0; i < dblen; i++)
  190. db[i] ^= maskeddb[i];
  191. if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
  192. goto cleanup;
  193. good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
  194. found_one_byte = 0;
  195. for (i = mdlen; i < dblen; i++) {
  196. /*
  197. * Padding consists of a number of 0-bytes, followed by a 1.
  198. */
  199. unsigned int equals1 = constant_time_eq(db[i], 1);
  200. unsigned int equals0 = constant_time_is_zero(db[i]);
  201. one_index = constant_time_select_int(~found_one_byte & equals1,
  202. i, one_index);
  203. found_one_byte |= equals1;
  204. good &= (found_one_byte | equals0);
  205. }
  206. good &= found_one_byte;
  207. /*
  208. * At this point |good| is zero unless the plaintext was valid,
  209. * so plaintext-awareness ensures timing side-channels are no longer a
  210. * concern.
  211. */
  212. msg_index = one_index + 1;
  213. mlen = dblen - msg_index;
  214. /*
  215. * For good measure, do this check in constant time as well.
  216. */
  217. good &= constant_time_ge(tlen, mlen);
  218. /*
  219. * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
  220. * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
  221. * Otherwise leave |to| unchanged.
  222. * Copy the memory back in a way that does not reveal the size of
  223. * the data being copied via a timing side channel. This requires copying
  224. * parts of the buffer multiple times based on the bits set in the real
  225. * length. Clear bits do a non-copy with identical access pattern.
  226. * The loop below has overall complexity of O(N*log(N)).
  227. */
  228. tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
  229. dblen - mdlen - 1, tlen);
  230. for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
  231. mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
  232. for (i = mdlen + 1; i < dblen - msg_index; i++)
  233. db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
  234. }
  235. for (i = 0; i < tlen; i++) {
  236. mask = good & constant_time_lt(i, mlen);
  237. to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
  238. }
  239. /*
  240. * To avoid chosen ciphertext attacks, the error message should not
  241. * reveal which kind of decoding error happened.
  242. */
  243. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
  244. RSA_R_OAEP_DECODING_ERROR);
  245. err_clear_last_constant_time(1 & good);
  246. cleanup:
  247. OPENSSL_cleanse(seed, sizeof(seed));
  248. OPENSSL_clear_free(db, dblen);
  249. OPENSSL_clear_free(em, num);
  250. return constant_time_select_int(good, mlen, -1);
  251. }
  252. /*
  253. * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
  254. * The variables are named differently to NIST:
  255. * mask (T) and len (maskLen)are the returned mask.
  256. * seed (mgfSeed).
  257. * The range checking steps inm the process are performed outside.
  258. */
  259. int PKCS1_MGF1(unsigned char *mask, long len,
  260. const unsigned char *seed, long seedlen, const EVP_MD *dgst)
  261. {
  262. long i, outlen = 0;
  263. unsigned char cnt[4];
  264. EVP_MD_CTX *c = EVP_MD_CTX_new();
  265. unsigned char md[EVP_MAX_MD_SIZE];
  266. int mdlen;
  267. int rv = -1;
  268. if (c == NULL)
  269. goto err;
  270. mdlen = EVP_MD_size(dgst);
  271. if (mdlen < 0)
  272. goto err;
  273. /* step 4 */
  274. for (i = 0; outlen < len; i++) {
  275. /* step 4a: D = I2BS(counter, 4) */
  276. cnt[0] = (unsigned char)((i >> 24) & 255);
  277. cnt[1] = (unsigned char)((i >> 16) & 255);
  278. cnt[2] = (unsigned char)((i >> 8)) & 255;
  279. cnt[3] = (unsigned char)(i & 255);
  280. /* step 4b: T =T || hash(mgfSeed || D) */
  281. if (!EVP_DigestInit_ex(c, dgst, NULL)
  282. || !EVP_DigestUpdate(c, seed, seedlen)
  283. || !EVP_DigestUpdate(c, cnt, 4))
  284. goto err;
  285. if (outlen + mdlen <= len) {
  286. if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
  287. goto err;
  288. outlen += mdlen;
  289. } else {
  290. if (!EVP_DigestFinal_ex(c, md, NULL))
  291. goto err;
  292. memcpy(mask + outlen, md, len - outlen);
  293. outlen = len;
  294. }
  295. }
  296. rv = 0;
  297. err:
  298. OPENSSL_cleanse(md, sizeof(md));
  299. EVP_MD_CTX_free(c);
  300. return rv;
  301. }