fips186a.txt 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. The origional FIPE 180 used SHA-0 (FIPS 180) for its appendix 5
  2. examples. This is an updated version that uses SHA-1 (FIPS 180-1)
  3. supplied to me by Wei Dai
  4. --
  5. APPENDIX 5. EXAMPLE OF THE DSA
  6. This appendix is for informational purposes only and is not required to meet
  7. the standard.
  8. Let L = 512 (size of p). The values in this example are expressed in
  9. hexadecimal notation. The p and q given here were generated by the prime
  10. generation standard described in appendix 2 using the 160-bit SEED:
  11. d5014e4b 60ef2ba8 b6211b40 62ba3224 e0427dd3
  12. With this SEED, the algorithm found p and q when the counter was at 105.
  13. x was generated by the algorithm described in appendix 3, section 3.1, using
  14. the SHA to construct G (as in appendix 3, section 3.3) and a 160-bit XSEED:
  15. XSEED =
  16. bd029bbe 7f51960b cf9edb2b 61f06f0f eb5a38b6
  17. t =
  18. 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
  19. x = G(t,XSEED) mod q
  20. k was generated by the algorithm described in appendix 3, section 3.2, using
  21. the SHA to construct G (as in appendix 3, section 3.3) and a 160-bit KSEED:
  22. KSEED =
  23. 687a66d9 0648f993 867e121f 4ddf9ddb 01205584
  24. t =
  25. EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301
  26. k = G(t,KSEED) mod q
  27. Finally:
  28. h = 2
  29. p =
  30. 8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7
  31. cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac
  32. 49693dfb f83724c2 ec0736ee 31c80291
  33. q =
  34. c773218c 737ec8ee 993b4f2d ed30f48e dace915f
  35. g =
  36. 626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb
  37. 3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c
  38. c42e9f6f 464b088c c572af53 e6d78802
  39. x =
  40. 2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614
  41. k =
  42. 358dad57 1462710f 50e254cf 1a376b2b deaadfbf
  43. kinv =
  44. 0d516729 8202e49b 4116ac10 4fc3f415 ae52f917
  45. M = ASCII form of "abc" (See FIPS PUB 180-1, Appendix A)
  46. SHA(M) =
  47. a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d
  48. y =
  49. 19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85
  50. 9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74
  51. 858fba33 f44c0669 9630a76b 030ee333
  52. r =
  53. 8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0
  54. s =
  55. 41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8
  56. w =
  57. 9df4ece5 826be95f ed406d41 b43edc0b 1c18841b
  58. u1 =
  59. bf655bd0 46f0b35e c791b004 804afcbb 8ef7d69d
  60. u2 =
  61. 821a9263 12e97ade abcc8d08 2b527897 8a2df4b0
  62. gu1 mod p =
  63. 51b1bf86 7888e5f3 af6fb476 9dd016bc fe667a65 aafc2753
  64. 9063bd3d 2b138b4c e02cc0c0 2ec62bb6 7306c63e 4db95bbf
  65. 6f96662a 1987a21b e4ec1071 010b6069
  66. yu2 mod p =
  67. 8b510071 2957e950 50d6b8fd 376a668e 4b0d633c 1e46e665
  68. 5c611a72 e2b28483 be52c74d 4b30de61 a668966e dc307a67
  69. c19441f4 22bf3c34 08aeba1f 0a4dbec7
  70. v =
  71. 8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0