123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755 |
- #!/usr/bin/env perl
- #
- # ====================================================================
- # Written by David Mosberger <David.Mosberger@acm.org> based on the
- # Itanium optimized Crypto code which was released by HP Labs at
- # http://www.hpl.hp.com/research/linux/crypto/.
- #
- # Copyright (c) 2005 Hewlett-Packard Development Company, L.P.
- #
- # Permission is hereby granted, free of charge, to any person obtaining
- # a copy of this software and associated documentation files (the
- # "Software"), to deal in the Software without restriction, including
- # without limitation the rights to use, copy, modify, merge, publish,
- # distribute, sublicense, and/or sell copies of the Software, and to
- # permit persons to whom the Software is furnished to do so, subject to
- # the following conditions:
- #
- # The above copyright notice and this permission notice shall be
- # included in all copies or substantial portions of the Software.
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- # This is a little helper program which generates a software-pipelined
- # for RC4 encryption. The basic algorithm looks like this:
- #
- # for (counter = 0; counter < len; ++counter)
- # {
- # in = inp[counter];
- # SI = S[I];
- # J = (SI + J) & 0xff;
- # SJ = S[J];
- # T = (SI + SJ) & 0xff;
- # S[I] = SJ, S[J] = SI;
- # ST = S[T];
- # outp[counter] = in ^ ST;
- # I = (I + 1) & 0xff;
- # }
- #
- # Pipelining this loop isn't easy, because the stores to the S[] array
- # need to be observed in the right order. The loop generated by the
- # code below has the following pipeline diagram:
- #
- # cycle
- # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 |
- # iter
- # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
- # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
- # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
- #
- # where:
- # LDI = load of S[I]
- # LDJ = load of S[J]
- # SWP = swap of S[I] and S[J]
- # LDT = load of S[T]
- #
- # Note that in the above diagram, the major trouble-spot is that LDI
- # of the 2nd iteration is performed BEFORE the SWP of the first
- # iteration. Fortunately, this is easy to detect (I of the 1st
- # iteration will be equal to J of the 2nd iteration) and when this
- # happens, we simply forward the proper value from the 1st iteration
- # to the 2nd one. The proper value in this case is simply the value
- # of S[I] from the first iteration (thanks to the fact that SWP
- # simply swaps the contents of S[I] and S[J]).
- #
- # Another potential trouble-spot is in cycle 7, where SWP of the 1st
- # iteration issues at the same time as the LDI of the 3rd iteration.
- # However, thanks to IA-64 execution semantics, this can be taken
- # care of simply by placing LDI later in the instruction-group than
- # SWP. IA-64 CPUs will automatically forward the value if they
- # detect that the SWP and LDI are accessing the same memory-location.
- # The core-loop that can be pipelined then looks like this (annotated
- # with McKinley/Madison issue port & latency numbers, assuming L1
- # cache hits for the most part):
- # operation: instruction: issue-ports: latency
- # ------------------ ----------------------------- ------------- -------
- # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0
- # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc
- # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc
- # ;;
- # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP!
- # ;;
- # cmp.eq.unc pBypass = I, J * after J is valid!
- # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2
- # (pBypass) br.cond.spnt Bypass
- # ;;
- # ---------------------------------------------------------------------------------------
- # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3
- # ;;
- # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4
- # ;;
- # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5
- # ;;
- # ---------------------------------------------------------------------------------------
- # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6
- # ;;
- # T = T & 0xff zxt1 T = T I0, I1 1 cyc
- # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7
- # S[J] = SI st8 [Jptr] = SI M2-M3
- # ;;
- # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8
- # ;;
- # ---------------------------------------------------------------------------------------
- # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9
- # ;;
- # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10
- # ;;
- # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11
- # ;;
- # ---------------------------------------------------------------------------------------
- # There are several points worth making here:
- # - Note that due to the bypass/forwarding-path, the first two
- # phases of the loop are strangly mingled together. In
- # particular, note that the first stage of the pipeline is
- # using the value of "J", as calculated by the second stage.
- # - Each bundle-pair will have exactly 6 instructions.
- # - Pipelined, the loop can execute in 3 cycles/iteration and
- # 4 stages. However, McKinley/Madison can issue "st1" to
- # the same bank at a rate of at most one per 4 cycles. Thus,
- # instead of storing each byte, we accumulate them in a word
- # and then write them back at once with a single "st8" (this
- # implies that the setup code needs to ensure that the output
- # buffer is properly aligned, if need be, by encoding the
- # first few bytes separately).
- # - There is no space for a "br.ctop" instruction. For this
- # reason we can't use module-loop support in IA-64 and have
- # to do a traditional, purely software-pipelined loop.
- # - We can't replace any of the remaining "add/zxt1" pairs with
- # "padd1" because the latency for that instruction is too high
- # and would push the loop to the point where more bypasses
- # would be needed, which we don't have space for.
- # - The above loop runs at around 3.26 cycles/byte, or roughly
- # 440 MByte/sec on a 1.5GHz Madison. This is well below the
- # system bus bandwidth and hence with judicious use of
- # "lfetch" this loop can run at (almost) peak speed even when
- # the input and output data reside in memory. The
- # max. latency that can be tolerated is (PREFETCH_DISTANCE *
- # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at
- # least) 1-ahead prefetching of 128 byte cache-lines. Note
- # that we do NOT prefetch into L1, since that would only
- # interfere with the S[] table values stored there. This is
- # acceptable because there is a 10 cycle latency between
- # load and first use of the input data.
- # - We use a branch to out-of-line bypass-code of cycle-pressure:
- # we calculate the next J, check for the need to activate the
- # bypass path, and activate the bypass path ALL IN THE SAME
- # CYCLE. If we didn't have these constraints, we could do
- # the bypass with a simple conditional move instruction.
- # Fortunately, the bypass paths get activated relatively
- # infrequently, so the extra branches don't cost all that much
- # (about 0.04 cycles/byte, measured on a 16396 byte file with
- # random input data).
- #
- $phases = 4; # number of stages/phases in the pipelined-loop
- $unroll_count = 6; # number of times we unrolled it
- $pComI = (1 << 0);
- $pComJ = (1 << 1);
- $pComT = (1 << 2);
- $pOut = (1 << 3);
- $NData = 4;
- $NIP = 3;
- $NJP = 2;
- $NI = 2;
- $NSI = 3;
- $NSJ = 2;
- $NT = 2;
- $NOutWord = 2;
- #
- # $threshold is the minimum length before we attempt to use the
- # big software-pipelined loop. It MUST be greater-or-equal
- # to:
- # PHASES * (UNROLL_COUNT + 1) + 7
- #
- # The "+ 7" comes from the fact we may have to encode up to
- # 7 bytes separately before the output pointer is aligned.
- #
- $threshold = (3 * ($phases * ($unroll_count + 1)) + 7);
- sub I {
- local *code = shift;
- local $format = shift;
- $code .= sprintf ("\t\t".$format."\n", @_);
- }
- sub P {
- local *code = shift;
- local $format = shift;
- $code .= sprintf ($format."\n", @_);
- }
- sub STOP {
- local *code = shift;
- $code .=<<___;
- ;;
- ___
- }
- sub emit_body {
- local *c = shift;
- local *bypass = shift;
- local ($iteration, $p) = @_;
- local $i0 = $iteration;
- local $i1 = $iteration - 1;
- local $i2 = $iteration - 2;
- local $i3 = $iteration - 3;
- local $iw0 = ($iteration - 3) / 8;
- local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1;
- local $byte_num = ($iteration - 3) % 8;
- local $label = $iteration + 1;
- local $pAny = ($p & 0xf) == 0xf;
- local $pByp = (($p & $pComI) && ($iteration > 0));
- $c.=<<___;
- //////////////////////////////////////////////////
- ___
- if (($p & 0xf) == 0) {
- $c.="#ifdef HOST_IS_BIG_ENDIAN\n";
- &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;",
- $iw1 % $NOutWord, $iw1 % $NOutWord);
- $c.="#endif\n";
- &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord);
- return;
- }
- # Cycle 0
- &I(\$c, "{ .mmi") if ($pAny);
- &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI);
- &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI);
- &I(\$c, "zxt1 J = J") if ($p & $pComJ);
- &I(\$c, "}") if ($pAny);
- &I(\$c, "{ .mmi") if ($pAny);
- &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut);
- &I(\$c, "add T[%u] = SI[%u], SJ[%u]",
- $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT);
- &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI);
- &I(\$c, "}") if ($pAny);
- &STOP(\$c);
- # Cycle 1
- &I(\$c, "{ .mmi") if ($pAny);
- &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT);
- &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT);
- &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT);
- &I(\$c, "}") if ($pAny);
- &I(\$c, "{ .mmi") if ($pAny);
- &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI);
- &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ);
- &I(\$c, "xor Data[%u] = Data[%u], T[%u]",
- $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut);
- &I(\$c, "}") if ($pAny);
- &STOP(\$c);
- # Cycle 2
- &I(\$c, "{ .mmi") if ($pAny);
- &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ);
- &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp);
- &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8",
- $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut);
- &I(\$c, "}") if ($pAny);
- &I(\$c, "{ .mmb") if ($pAny);
- &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI);
- &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT);
- &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp);
- &I(\$c, "}") if ($pAny);
- &STOP(\$c);
- &P(\$c, ".rc4Resume%u:", $label) if ($pByp);
- if ($byte_num == 0 && $iteration >= $phases) {
- &I(\$c, "st8 [OutPtr] = OutWord[%u], 8",
- $iw1 % $NOutWord) if ($p & $pOut);
- if ($iteration == (1 + $unroll_count) * $phases - 1) {
- if ($unroll_count == 6) {
- &I(\$c, "mov OutWord[%u] = OutWord[%u]",
- $iw1 % $NOutWord, $iw0 % $NOutWord);
- }
- &I(\$c, "lfetch.nt1 [InPrefetch], %u",
- $unroll_count * $phases);
- &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u",
- $unroll_count * $phases);
- &I(\$c, "br.cloop.sptk.few .rc4Loop");
- }
- }
- if ($pByp) {
- &P(\$bypass, ".rc4Bypass%u:", $label);
- &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI);
- &I(\$bypass, "nop 0");
- &I(\$bypass, "nop 0");
- &I(\$bypass, ";;");
- &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI);
- &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI);
- &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label);
- &I(\$bypass, ";;");
- }
- }
- $code=<<___;
- .ident \"rc4-ia64.s, version 3.0\"
- .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\"
- #define LCSave r8
- #define PRSave r9
- /* Inputs become invalid once rotation begins! */
- #define StateTable in0
- #define DataLen in1
- #define InputBuffer in2
- #define OutputBuffer in3
- #define KTable r14
- #define J r15
- #define InPtr r16
- #define OutPtr r17
- #define InPrefetch r18
- #define OutPrefetch r19
- #define One r20
- #define LoopCount r21
- #define Remainder r22
- #define IFinal r23
- #define EndPtr r24
- #define tmp0 r25
- #define tmp1 r26
- #define pBypass p6
- #define pDone p7
- #define pSmall p8
- #define pAligned p9
- #define pUnaligned p10
- #define pComputeI pPhase[0]
- #define pComputeJ pPhase[1]
- #define pComputeT pPhase[2]
- #define pOutput pPhase[3]
- #define RetVal r8
- #define L_OK p7
- #define L_NOK p8
- #define _NINPUTS 4
- #define _NOUTPUT 0
- #define _NROTATE 24
- #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT)
- #ifndef SZ
- # define SZ 4 // this must be set to sizeof(RC4_INT)
- #endif
- #if SZ == 1
- # define LKEY ld1
- # define SKEY st1
- # define KEYADDR(dst, i) add dst = i, KTable
- #elif SZ == 2
- # define LKEY ld2
- # define SKEY st2
- # define KEYADDR(dst, i) shladd dst = i, 1, KTable
- #elif SZ == 4
- # define LKEY ld4
- # define SKEY st4
- # define KEYADDR(dst, i) shladd dst = i, 2, KTable
- #else
- # define LKEY ld8
- # define SKEY st8
- # define KEYADDR(dst, i) shladd dst = i, 3, KTable
- #endif
- #if defined(_HPUX_SOURCE) && !defined(_LP64)
- # define ADDP addp4
- #else
- # define ADDP add
- #endif
- /* Define a macro for the bit number of the n-th byte: */
- #if defined(_HPUX_SOURCE) || defined(B_ENDIAN)
- # define HOST_IS_BIG_ENDIAN
- # define BYTE_POS(n) (56 - (8 * (n)))
- #else
- # define BYTE_POS(n) (8 * (n))
- #endif
- /*
- We must perform the first phase of the pipeline explicitly since
- we will always load from the stable the first time. The br.cexit
- will never be taken since regardless of the number of bytes because
- the epilogue count is 4.
- */
- /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX
- assembler failed on original macro with syntax error. <appro> */
- #define MODSCHED_RC4_PROLOGUE \\
- { \\
- ld1 Data[0] = [InPtr], 1; \\
- add IFinal = 1, I[1]; \\
- KEYADDR(IPr[0], I[1]); \\
- } ;; \\
- { \\
- LKEY SI[0] = [IPr[0]]; \\
- mov pr.rot = 0x10000; \\
- mov ar.ec = 4; \\
- } ;; \\
- { \\
- add J = J, SI[0]; \\
- zxt1 I[0] = IFinal; \\
- br.cexit.spnt.few .+16; /* never taken */ \\
- } ;;
- #define MODSCHED_RC4_LOOP(label) \\
- label: \\
- { .mmi; \\
- (pComputeI) ld1 Data[0] = [InPtr], 1; \\
- (pComputeI) add IFinal = 1, I[1]; \\
- (pComputeJ) zxt1 J = J; \\
- }{ .mmi; \\
- (pOutput) LKEY T[1] = [T[1]]; \\
- (pComputeT) add T[0] = SI[2], SJ[1]; \\
- (pComputeI) KEYADDR(IPr[0], I[1]); \\
- } ;; \\
- { .mmi; \\
- (pComputeT) SKEY [IPr[2]] = SJ[1]; \\
- (pComputeT) SKEY [JP[1]] = SI[2]; \\
- (pComputeT) zxt1 T[0] = T[0]; \\
- }{ .mmi; \\
- (pComputeI) LKEY SI[0] = [IPr[0]]; \\
- (pComputeJ) KEYADDR(JP[0], J); \\
- (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\
- } ;; \\
- { .mmi; \\
- (pComputeJ) LKEY SJ[0] = [JP[0]]; \\
- (pOutput) xor Data[3] = Data[3], T[1]; \\
- nop 0x0; \\
- }{ .mmi; \\
- (pComputeT) KEYADDR(T[0], T[0]); \\
- (pBypass) mov SI[0] = SI[1]; \\
- (pComputeI) zxt1 I[0] = IFinal; \\
- } ;; \\
- { .mmb; \\
- (pOutput) st1 [OutPtr] = Data[3], 1; \\
- (pComputeI) add J = J, SI[0]; \\
- br.ctop.sptk.few label; \\
- } ;;
- .text
- .align 32
- .type RC4, \@function
- .global RC4
- .proc RC4
- .prologue
- RC4:
- {
- .mmi
- alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
- .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\
- OutWord[2]
- .rotp pPhase[4]
- ADDP InPrefetch = 0, InputBuffer
- ADDP KTable = 0, StateTable
- }
- {
- .mmi
- ADDP InPtr = 0, InputBuffer
- ADDP OutPtr = 0, OutputBuffer
- mov RetVal = r0
- }
- ;;
- {
- .mmi
- lfetch.nt1 [InPrefetch], 0x80
- ADDP OutPrefetch = 0, OutputBuffer
- }
- { // Return 0 if the input length is nonsensical
- .mib
- ADDP StateTable = 0, StateTable
- cmp.ge.unc L_NOK, L_OK = r0, DataLen
- (L_NOK) br.ret.sptk.few rp
- }
- ;;
- {
- .mib
- cmp.eq.or L_NOK, L_OK = r0, InPtr
- cmp.eq.or L_NOK, L_OK = r0, OutPtr
- nop 0x0
- }
- {
- .mib
- cmp.eq.or L_NOK, L_OK = r0, StateTable
- nop 0x0
- (L_NOK) br.ret.sptk.few rp
- }
- ;;
- LKEY I[1] = [KTable], SZ
- /* Prefetch the state-table. It contains 256 elements of size SZ */
- #if SZ == 1
- ADDP tmp0 = 1*128, StateTable
- #elif SZ == 2
- ADDP tmp0 = 3*128, StateTable
- ADDP tmp1 = 2*128, StateTable
- #elif SZ == 4
- ADDP tmp0 = 7*128, StateTable
- ADDP tmp1 = 6*128, StateTable
- #elif SZ == 8
- ADDP tmp0 = 15*128, StateTable
- ADDP tmp1 = 14*128, StateTable
- #endif
- ;;
- #if SZ >= 8
- lfetch.fault.nt1 [tmp0], -256 // 15
- lfetch.fault.nt1 [tmp1], -256;;
- lfetch.fault.nt1 [tmp0], -256 // 13
- lfetch.fault.nt1 [tmp1], -256;;
- lfetch.fault.nt1 [tmp0], -256 // 11
- lfetch.fault.nt1 [tmp1], -256;;
- lfetch.fault.nt1 [tmp0], -256 // 9
- lfetch.fault.nt1 [tmp1], -256;;
- #endif
- #if SZ >= 4
- lfetch.fault.nt1 [tmp0], -256 // 7
- lfetch.fault.nt1 [tmp1], -256;;
- lfetch.fault.nt1 [tmp0], -256 // 5
- lfetch.fault.nt1 [tmp1], -256;;
- #endif
- #if SZ >= 2
- lfetch.fault.nt1 [tmp0], -256 // 3
- lfetch.fault.nt1 [tmp1], -256;;
- #endif
- {
- .mii
- lfetch.fault.nt1 [tmp0] // 1
- add I[1]=1,I[1];;
- zxt1 I[1]=I[1]
- }
- {
- .mmi
- lfetch.nt1 [InPrefetch], 0x80
- lfetch.excl.nt1 [OutPrefetch], 0x80
- .save pr, PRSave
- mov PRSave = pr
- } ;;
- {
- .mmi
- lfetch.excl.nt1 [OutPrefetch], 0x80
- LKEY J = [KTable], SZ
- ADDP EndPtr = DataLen, InPtr
- } ;;
- {
- .mmi
- ADDP EndPtr = -1, EndPtr // Make it point to
- // last data byte.
- mov One = 1
- .save ar.lc, LCSave
- mov LCSave = ar.lc
- .body
- } ;;
- {
- .mmb
- sub Remainder = 0, OutPtr
- cmp.gtu pSmall, p0 = $threshold, DataLen
- (pSmall) br.cond.dpnt .rc4Remainder // Data too small for
- // big loop.
- } ;;
- {
- .mmi
- and Remainder = 0x7, Remainder
- ;;
- cmp.eq pAligned, pUnaligned = Remainder, r0
- nop 0x0
- } ;;
- {
- .mmb
- .pred.rel "mutex",pUnaligned,pAligned
- (pUnaligned) add Remainder = -1, Remainder
- (pAligned) sub Remainder = EndPtr, InPtr
- (pAligned) br.cond.dptk.many .rc4Aligned
- } ;;
- {
- .mmi
- nop 0x0
- nop 0x0
- mov.i ar.lc = Remainder
- }
- /* Do the initial few bytes via the compact, modulo-scheduled loop
- until the output pointer is 8-byte-aligned. */
- MODSCHED_RC4_PROLOGUE
- MODSCHED_RC4_LOOP(.RC4AlignLoop)
- {
- .mib
- sub Remainder = EndPtr, InPtr
- zxt1 IFinal = IFinal
- clrrrb // Clear CFM.rrb.pr so
- ;; // next "mov pr.rot = N"
- // does the right thing.
- }
- {
- .mmi
- mov I[1] = IFinal
- nop 0x0
- nop 0x0
- } ;;
- .rc4Aligned:
- /*
- Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases)
- */
- {
- .mlx
- add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder
- movl Remainder = 0xaaaaaaaaaaaaaaab
- } ;;
- {
- .mmi
- setf.sig f6 = LoopCount // M2, M3 6 cyc
- setf.sig f7 = Remainder // M2, M3 6 cyc
- nop 0x0
- } ;;
- {
- .mfb
- nop 0x0
- xmpy.hu f6 = f6, f7
- nop 0x0
- } ;;
- {
- .mmi
- getf.sig LoopCount = f6;; // M2 5 cyc
- nop 0x0
- shr.u LoopCount = LoopCount, 4
- } ;;
- {
- .mmi
- nop 0x0
- nop 0x0
- mov.i ar.lc = LoopCount
- } ;;
- /* Now comes the unrolled loop: */
- .rc4Prologue:
- ___
- $iteration = 0;
- # Generate the prologue:
- $predicates = 1;
- for ($i = 0; $i < $phases; ++$i) {
- &emit_body (\$code, \$bypass, $iteration++, $predicates);
- $predicates = ($predicates << 1) | 1;
- }
- $code.=<<___;
- .rc4Loop:
- ___
- # Generate the body:
- for ($i = 0; $i < $unroll_count*$phases; ++$i) {
- &emit_body (\$code, \$bypass, $iteration++, $predicates);
- }
- $code.=<<___;
- .rc4Epilogue:
- ___
- # Generate the epilogue:
- for ($i = 0; $i < $phases; ++$i) {
- $predicates <<= 1;
- &emit_body (\$code, \$bypass, $iteration++, $predicates);
- }
- $code.=<<___;
- {
- .mmi
- lfetch.nt1 [EndPtr] // fetch line with last byte
- mov IFinal = I[1]
- nop 0x0
- }
- .rc4Remainder:
- {
- .mmi
- sub Remainder = EndPtr, InPtr // Calculate
- // # of bytes
- // left - 1
- nop 0x0
- nop 0x0
- } ;;
- {
- .mib
- cmp.eq pDone, p0 = -1, Remainder // done already?
- mov.i ar.lc = Remainder
- (pDone) br.cond.dptk.few .rc4Complete
- }
- /* Do the remaining bytes via the compact, modulo-scheduled loop */
- MODSCHED_RC4_PROLOGUE
- MODSCHED_RC4_LOOP(.RC4RestLoop)
- .rc4Complete:
- {
- .mmi
- add KTable = -SZ, KTable
- add IFinal = -1, IFinal
- mov ar.lc = LCSave
- } ;;
- {
- .mii
- SKEY [KTable] = J,-SZ
- zxt1 IFinal = IFinal
- mov pr = PRSave, 0x1FFFF
- } ;;
- {
- .mib
- SKEY [KTable] = IFinal
- add RetVal = 1, r0
- br.ret.sptk.few rp
- } ;;
- ___
- # Last but not least, emit the code for the bypass-code of the unrolled loop:
- $code.=$bypass;
- $code.=<<___;
- .endp RC4
- ___
- print $code;
|