123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- #!/usr/bin/env perl
- #
- # ====================================================================
- # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
- # project. Rights for redistribution and usage in source and binary
- # forms are granted according to the OpenSSL license.
- # ====================================================================
- #
- # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
- # "hand-coded assembler"] doesn't stand for the whole improvement
- # coefficient. It turned out that eliminating RC4_CHAR from config
- # line results in ~40% improvement (yes, even for C implementation).
- # Presumably it has everything to do with AMD cache architecture and
- # RAW or whatever penalties. Once again! The module *requires* config
- # line *without* RC4_CHAR! As for coding "secret," I bet on partial
- # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
- # I simply 'inc %r8b'. Even though optimization manual discourages
- # to operate on partial registers, it turned out to be the best bet.
- # At least for AMD... How IA32E would perform remains to be seen...
- # As was shown by Marc Bevand reordering of couple of load operations
- # results in even higher performance gain of 3.3x:-) At least on
- # Opteron... For reference, 1x in this case is RC4_CHAR C-code
- # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
- # Latter means that if you want to *estimate* what to expect from
- # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
- # Intel P4 EM64T core was found to run the AMD64 code really slow...
- # The only way to achieve comparable performance on P4 was to keep
- # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
- # compose blended code, which would perform even within 30% marginal
- # on either AMD and Intel platforms, I implement both cases. See
- # rc4_skey.c for further details...
- # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
- # those with add/sub results in 50% performance improvement of folded
- # loop...
- # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
- # performance by >30% [unlike P4 32-bit case that is]. But this is
- # provided that loads are reordered even more aggressively! Both code
- # pathes, AMD64 and EM64T, reorder loads in essentially same manner
- # as my IA-64 implementation. On Opteron this resulted in modest 5%
- # improvement [I had to test it], while final Intel P4 performance
- # achieves respectful 432MBps on 2.8GHz processor now. For reference.
- # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
- # RC4_INT code-path. While if executed on Opteron, it's only 25%
- # slower than the RC4_INT one [meaning that if CPU µ-arch detection
- # is not implemented, then this final RC4_CHAR code-path should be
- # preferred, as it provides better *all-round* performance].
- $output=shift;
- open STDOUT,"| $^X ../perlasm/x86_64-xlate.pl $output";
- $dat="%rdi"; # arg1
- $len="%rsi"; # arg2
- $inp="%rdx"; # arg3
- $out="%rcx"; # arg4
- @XX=("%r8","%r10");
- @TX=("%r9","%r11");
- $YY="%r12";
- $TY="%r13";
- $code=<<___;
- .text
- .globl RC4
- .type RC4,\@function,4
- .align 16
- RC4: or $len,$len
- jne .Lentry
- ret
- .Lentry:
- push %r12
- push %r13
- add \$8,$dat
- movl -8($dat),$XX[0]#d
- movl -4($dat),$YY#d
- cmpl \$-1,256($dat)
- je .LRC4_CHAR
- inc $XX[0]#b
- movl ($dat,$XX[0],4),$TX[0]#d
- test \$-8,$len
- jz .Lloop1
- jmp .Lloop8
- .align 16
- .Lloop8:
- ___
- for ($i=0;$i<8;$i++) {
- $code.=<<___;
- add $TX[0]#b,$YY#b
- mov $XX[0],$XX[1]
- movl ($dat,$YY,4),$TY#d
- ror \$8,%rax # ror is redundant when $i=0
- inc $XX[1]#b
- movl ($dat,$XX[1],4),$TX[1]#d
- cmp $XX[1],$YY
- movl $TX[0]#d,($dat,$YY,4)
- cmove $TX[0],$TX[1]
- movl $TY#d,($dat,$XX[0],4)
- add $TX[0]#b,$TY#b
- movb ($dat,$TY,4),%al
- ___
- push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
- }
- $code.=<<___;
- ror \$8,%rax
- sub \$8,$len
- xor ($inp),%rax
- add \$8,$inp
- mov %rax,($out)
- add \$8,$out
- test \$-8,$len
- jnz .Lloop8
- cmp \$0,$len
- jne .Lloop1
- ___
- $code.=<<___;
- .Lexit:
- sub \$1,$XX[0]#b
- movl $XX[0]#d,-8($dat)
- movl $YY#d,-4($dat)
- pop %r13
- pop %r12
- ret
- .align 16
- .Lloop1:
- add $TX[0]#b,$YY#b
- movl ($dat,$YY,4),$TY#d
- movl $TX[0]#d,($dat,$YY,4)
- movl $TY#d,($dat,$XX[0],4)
- add $TY#b,$TX[0]#b
- inc $XX[0]#b
- movl ($dat,$TX[0],4),$TY#d
- movl ($dat,$XX[0],4),$TX[0]#d
- xorb ($inp),$TY#b
- inc $inp
- movb $TY#b,($out)
- inc $out
- dec $len
- jnz .Lloop1
- jmp .Lexit
- .align 16
- .LRC4_CHAR:
- add \$1,$XX[0]#b
- movzb ($dat,$XX[0]),$TX[0]#d
- test \$-8,$len
- jz .Lcloop1
- push %rbx
- jmp .Lcloop8
- .align 16
- .Lcloop8:
- mov ($inp),%eax
- mov 4($inp),%ebx
- ___
- # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
- for ($i=0;$i<4;$i++) {
- $code.=<<___;
- add $TX[0]#b,$YY#b
- lea 1($XX[0]),$XX[1]
- movzb ($dat,$YY),$TY#d
- movzb $XX[1]#b,$XX[1]#d
- movzb ($dat,$XX[1]),$TX[1]#d
- movb $TX[0]#b,($dat,$YY)
- cmp $XX[1],$YY
- movb $TY#b,($dat,$XX[0])
- jne .Lcmov$i # Intel cmov is sloooow...
- mov $TX[0],$TX[1]
- .Lcmov$i:
- add $TX[0]#b,$TY#b
- xor ($dat,$TY),%al
- ror \$8,%eax
- ___
- push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
- }
- for ($i=4;$i<8;$i++) {
- $code.=<<___;
- add $TX[0]#b,$YY#b
- lea 1($XX[0]),$XX[1]
- movzb ($dat,$YY),$TY#d
- movzb $XX[1]#b,$XX[1]#d
- movzb ($dat,$XX[1]),$TX[1]#d
- movb $TX[0]#b,($dat,$YY)
- cmp $XX[1],$YY
- movb $TY#b,($dat,$XX[0])
- jne .Lcmov$i # Intel cmov is sloooow...
- mov $TX[0],$TX[1]
- .Lcmov$i:
- add $TX[0]#b,$TY#b
- xor ($dat,$TY),%bl
- ror \$8,%ebx
- ___
- push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
- }
- $code.=<<___;
- lea -8($len),$len
- mov %eax,($out)
- lea 8($inp),$inp
- mov %ebx,4($out)
- lea 8($out),$out
- test \$-8,$len
- jnz .Lcloop8
- pop %rbx
- cmp \$0,$len
- jne .Lcloop1
- jmp .Lexit
- ___
- $code.=<<___;
- .align 16
- .Lcloop1:
- add $TX[0]#b,$YY#b
- movzb ($dat,$YY),$TY#d
- movb $TX[0]#b,($dat,$YY)
- movb $TY#b,($dat,$XX[0])
- add $TX[0]#b,$TY#b
- add \$1,$XX[0]#b
- movzb ($dat,$TY),$TY#d
- movzb ($dat,$XX[0]),$TX[0]#d
- xorb ($inp),$TY#b
- lea 1($inp),$inp
- movb $TY#b,($out)
- lea 1($out),$out
- sub \$1,$len
- jnz .Lcloop1
- jmp .Lexit
- .size RC4,.-RC4
- ___
- $code =~ s/#([bwd])/$1/gm;
- print $code;
- close STDOUT;
|