123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969 |
- /*
- * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <openssl/err.h>
- #include "internal/bn_int.h"
- #include "ec_lcl.h"
- #ifndef OPENSSL_NO_EC2M
- /*
- * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
- * are handled by EC_GROUP_new.
- */
- int ec_GF2m_simple_group_init(EC_GROUP *group)
- {
- group->field = BN_new();
- group->a = BN_new();
- group->b = BN_new();
- if (group->field == NULL || group->a == NULL || group->b == NULL) {
- BN_free(group->field);
- BN_free(group->a);
- BN_free(group->b);
- return 0;
- }
- return 1;
- }
- /*
- * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
- * handled by EC_GROUP_free.
- */
- void ec_GF2m_simple_group_finish(EC_GROUP *group)
- {
- BN_free(group->field);
- BN_free(group->a);
- BN_free(group->b);
- }
- /*
- * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
- * members are handled by EC_GROUP_clear_free.
- */
- void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
- {
- BN_clear_free(group->field);
- BN_clear_free(group->a);
- BN_clear_free(group->b);
- group->poly[0] = 0;
- group->poly[1] = 0;
- group->poly[2] = 0;
- group->poly[3] = 0;
- group->poly[4] = 0;
- group->poly[5] = -1;
- }
- /*
- * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
- * handled by EC_GROUP_copy.
- */
- int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- if (!BN_copy(dest->field, src->field))
- return 0;
- if (!BN_copy(dest->a, src->a))
- return 0;
- if (!BN_copy(dest->b, src->b))
- return 0;
- dest->poly[0] = src->poly[0];
- dest->poly[1] = src->poly[1];
- dest->poly[2] = src->poly[2];
- dest->poly[3] = src->poly[3];
- dest->poly[4] = src->poly[4];
- dest->poly[5] = src->poly[5];
- if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
- NULL)
- return 0;
- if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
- NULL)
- return 0;
- bn_set_all_zero(dest->a);
- bn_set_all_zero(dest->b);
- return 1;
- }
- /* Set the curve parameters of an EC_GROUP structure. */
- int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0, i;
- /* group->field */
- if (!BN_copy(group->field, p))
- goto err;
- i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
- if ((i != 5) && (i != 3)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
- goto err;
- }
- /* group->a */
- if (!BN_GF2m_mod_arr(group->a, a, group->poly))
- goto err;
- if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
- == NULL)
- goto err;
- bn_set_all_zero(group->a);
- /* group->b */
- if (!BN_GF2m_mod_arr(group->b, b, group->poly))
- goto err;
- if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
- == NULL)
- goto err;
- bn_set_all_zero(group->b);
- ret = 1;
- err:
- return ret;
- }
- /*
- * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
- * then there values will not be set but the method will return with success.
- */
- int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
- BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- if (p != NULL) {
- if (!BN_copy(p, group->field))
- return 0;
- }
- if (a != NULL) {
- if (!BN_copy(a, group->a))
- goto err;
- }
- if (b != NULL) {
- if (!BN_copy(b, group->b))
- goto err;
- }
- ret = 1;
- err:
- return ret;
- }
- /*
- * Gets the degree of the field. For a curve over GF(2^m) this is the value
- * m.
- */
- int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
- {
- return BN_num_bits(group->field) - 1;
- }
- /*
- * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
- * elliptic curve <=> b != 0 (mod p)
- */
- int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
- BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *b;
- BN_CTX *new_ctx = NULL;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
- ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- if (b == NULL)
- goto err;
- if (!BN_GF2m_mod_arr(b, group->b, group->poly))
- goto err;
- /*
- * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
- * curve <=> b != 0 (mod p)
- */
- if (BN_is_zero(b))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /* Initializes an EC_POINT. */
- int ec_GF2m_simple_point_init(EC_POINT *point)
- {
- point->X = BN_new();
- point->Y = BN_new();
- point->Z = BN_new();
- if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
- BN_free(point->X);
- BN_free(point->Y);
- BN_free(point->Z);
- return 0;
- }
- return 1;
- }
- /* Frees an EC_POINT. */
- void ec_GF2m_simple_point_finish(EC_POINT *point)
- {
- BN_free(point->X);
- BN_free(point->Y);
- BN_free(point->Z);
- }
- /* Clears and frees an EC_POINT. */
- void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
- {
- BN_clear_free(point->X);
- BN_clear_free(point->Y);
- BN_clear_free(point->Z);
- point->Z_is_one = 0;
- }
- /*
- * Copy the contents of one EC_POINT into another. Assumes dest is
- * initialized.
- */
- int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(dest->X, src->X))
- return 0;
- if (!BN_copy(dest->Y, src->Y))
- return 0;
- if (!BN_copy(dest->Z, src->Z))
- return 0;
- dest->Z_is_one = src->Z_is_one;
- dest->curve_name = src->curve_name;
- return 1;
- }
- /*
- * Set an EC_POINT to the point at infinity. A point at infinity is
- * represented by having Z=0.
- */
- int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
- EC_POINT *point)
- {
- point->Z_is_one = 0;
- BN_zero(point->Z);
- return 1;
- }
- /*
- * Set the coordinates of an EC_POINT using affine coordinates. Note that
- * the simple implementation only uses affine coordinates.
- */
- int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx)
- {
- int ret = 0;
- if (x == NULL || y == NULL) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
- ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
- if (!BN_copy(point->X, x))
- goto err;
- BN_set_negative(point->X, 0);
- if (!BN_copy(point->Y, y))
- goto err;
- BN_set_negative(point->Y, 0);
- if (!BN_copy(point->Z, BN_value_one()))
- goto err;
- BN_set_negative(point->Z, 0);
- point->Z_is_one = 1;
- ret = 1;
- err:
- return ret;
- }
- /*
- * Gets the affine coordinates of an EC_POINT. Note that the simple
- * implementation only uses affine coordinates.
- */
- int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (BN_cmp(point->Z, BN_value_one())) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return 0;
- }
- if (x != NULL) {
- if (!BN_copy(x, point->X))
- goto err;
- BN_set_negative(x, 0);
- }
- if (y != NULL) {
- if (!BN_copy(y, point->Y))
- goto err;
- BN_set_negative(y, 0);
- }
- ret = 1;
- err:
- return ret;
- }
- /*
- * Computes a + b and stores the result in r. r could be a or b, a could be
- * b. Uses algorithm A.10.2 of IEEE P1363.
- */
- int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, a)) {
- if (!EC_POINT_copy(r, b))
- return 0;
- return 1;
- }
- if (EC_POINT_is_at_infinity(group, b)) {
- if (!EC_POINT_copy(r, a))
- return 0;
- return 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x0 = BN_CTX_get(ctx);
- y0 = BN_CTX_get(ctx);
- x1 = BN_CTX_get(ctx);
- y1 = BN_CTX_get(ctx);
- x2 = BN_CTX_get(ctx);
- y2 = BN_CTX_get(ctx);
- s = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL)
- goto err;
- if (a->Z_is_one) {
- if (!BN_copy(x0, a->X))
- goto err;
- if (!BN_copy(y0, a->Y))
- goto err;
- } else {
- if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
- goto err;
- }
- if (b->Z_is_one) {
- if (!BN_copy(x1, b->X))
- goto err;
- if (!BN_copy(y1, b->Y))
- goto err;
- } else {
- if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
- goto err;
- }
- if (BN_GF2m_cmp(x0, x1)) {
- if (!BN_GF2m_add(t, x0, x1))
- goto err;
- if (!BN_GF2m_add(s, y0, y1))
- goto err;
- if (!group->meth->field_div(group, s, s, t, ctx))
- goto err;
- if (!group->meth->field_sqr(group, x2, s, ctx))
- goto err;
- if (!BN_GF2m_add(x2, x2, group->a))
- goto err;
- if (!BN_GF2m_add(x2, x2, s))
- goto err;
- if (!BN_GF2m_add(x2, x2, t))
- goto err;
- } else {
- if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
- if (!EC_POINT_set_to_infinity(group, r))
- goto err;
- ret = 1;
- goto err;
- }
- if (!group->meth->field_div(group, s, y1, x1, ctx))
- goto err;
- if (!BN_GF2m_add(s, s, x1))
- goto err;
- if (!group->meth->field_sqr(group, x2, s, ctx))
- goto err;
- if (!BN_GF2m_add(x2, x2, s))
- goto err;
- if (!BN_GF2m_add(x2, x2, group->a))
- goto err;
- }
- if (!BN_GF2m_add(y2, x1, x2))
- goto err;
- if (!group->meth->field_mul(group, y2, y2, s, ctx))
- goto err;
- if (!BN_GF2m_add(y2, y2, x2))
- goto err;
- if (!BN_GF2m_add(y2, y2, y1))
- goto err;
- if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
- * A.10.2 of IEEE P1363.
- */
- int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- BN_CTX *ctx)
- {
- return ec_GF2m_simple_add(group, r, a, a, ctx);
- }
- int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
- /* point is its own inverse */
- return 1;
- if (!EC_POINT_make_affine(group, point, ctx))
- return 0;
- return BN_GF2m_add(point->Y, point->X, point->Y);
- }
- /* Indicates whether the given point is the point at infinity. */
- int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
- const EC_POINT *point)
- {
- return BN_is_zero(point->Z);
- }
- /*-
- * Determines whether the given EC_POINT is an actual point on the curve defined
- * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
- * y^2 + x*y = x^3 + a*x^2 + b.
- */
- int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
- BN_CTX *ctx)
- {
- int ret = -1;
- BN_CTX *new_ctx = NULL;
- BIGNUM *lh, *y2;
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- if (EC_POINT_is_at_infinity(group, point))
- return 1;
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- /* only support affine coordinates */
- if (!point->Z_is_one)
- return -1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- y2 = BN_CTX_get(ctx);
- lh = BN_CTX_get(ctx);
- if (lh == NULL)
- goto err;
- /*-
- * We have a curve defined by a Weierstrass equation
- * y^2 + x*y = x^3 + a*x^2 + b.
- * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
- * <=> ((x + a) * x + y ) * x + b + y^2 = 0
- */
- if (!BN_GF2m_add(lh, point->X, group->a))
- goto err;
- if (!field_mul(group, lh, lh, point->X, ctx))
- goto err;
- if (!BN_GF2m_add(lh, lh, point->Y))
- goto err;
- if (!field_mul(group, lh, lh, point->X, ctx))
- goto err;
- if (!BN_GF2m_add(lh, lh, group->b))
- goto err;
- if (!field_sqr(group, y2, point->Y, ctx))
- goto err;
- if (!BN_GF2m_add(lh, lh, y2))
- goto err;
- ret = BN_is_zero(lh);
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*-
- * Indicates whether two points are equal.
- * Return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
- int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- BIGNUM *aX, *aY, *bX, *bY;
- BN_CTX *new_ctx = NULL;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
- if (EC_POINT_is_at_infinity(group, b))
- return 1;
- if (a->Z_is_one && b->Z_is_one) {
- return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- aX = BN_CTX_get(ctx);
- aY = BN_CTX_get(ctx);
- bX = BN_CTX_get(ctx);
- bY = BN_CTX_get(ctx);
- if (bY == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
- goto err;
- if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
- goto err;
- ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /* Forces the given EC_POINT to internally use affine coordinates. */
- int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
- return 1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
- goto err;
- if (!BN_copy(point->X, x))
- goto err;
- if (!BN_copy(point->Y, y))
- goto err;
- if (!BN_one(point->Z))
- goto err;
- point->Z_is_one = 1;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*
- * Forces each of the EC_POINTs in the given array to use affine coordinates.
- */
- int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
- EC_POINT *points[], BN_CTX *ctx)
- {
- size_t i;
- for (i = 0; i < num; i++) {
- if (!group->meth->make_affine(group, points[i], ctx))
- return 0;
- }
- return 1;
- }
- /* Wrapper to simple binary polynomial field multiplication implementation. */
- int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
- }
- /* Wrapper to simple binary polynomial field squaring implementation. */
- int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, BN_CTX *ctx)
- {
- return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
- }
- /* Wrapper to simple binary polynomial field division implementation. */
- int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_div(r, a, b, group->field, ctx);
- }
- /*-
- * Lopez-Dahab ladder, pre step.
- * See e.g. "Guide to ECC" Alg 3.40.
- * Modified to blind s and r independently.
- * s:= p, r := 2p
- */
- static
- int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- /* if p is not affine, something is wrong */
- if (p->Z_is_one == 0)
- return 0;
- /* s blinding: make sure lambda (s->Z here) is not zero */
- do {
- if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
- BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
- return 0;
- }
- } while (BN_is_zero(s->Z));
- /* if field_encode defined convert between representations */
- if ((group->meth->field_encode != NULL
- && !group->meth->field_encode(group, s->Z, s->Z, ctx))
- || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
- return 0;
- /* r blinding: make sure lambda (r->Y here for storage) is not zero */
- do {
- if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
- BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
- return 0;
- }
- } while (BN_is_zero(r->Y));
- if ((group->meth->field_encode != NULL
- && !group->meth->field_encode(group, r->Y, r->Y, ctx))
- || !group->meth->field_sqr(group, r->Z, p->X, ctx)
- || !group->meth->field_sqr(group, r->X, r->Z, ctx)
- || !BN_GF2m_add(r->X, r->X, group->b)
- || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
- || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
- return 0;
- s->Z_is_one = 0;
- r->Z_is_one = 0;
- return 1;
- }
- /*-
- * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
- * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
- * s := r + s, r := 2r
- */
- static
- int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
- || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
- || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
- || !group->meth->field_sqr(group, r->Z, r->X, ctx)
- || !BN_GF2m_add(s->Z, r->Y, s->X)
- || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
- || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
- || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
- || !BN_GF2m_add(s->X, s->X, r->Y)
- || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
- || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
- || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
- || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
- || !BN_GF2m_add(r->X, r->Y, s->Y))
- return 0;
- return 1;
- }
- /*-
- * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
- * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
- * without Precomputation" (Lopez and Dahab, CHES 1999),
- * Appendix Alg Mxy.
- */
- static
- int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *t0, *t1, *t2 = NULL;
- if (BN_is_zero(r->Z))
- return EC_POINT_set_to_infinity(group, r);
- if (BN_is_zero(s->Z)) {
- if (!EC_POINT_copy(r, p)
- || !EC_POINT_invert(group, r, ctx)) {
- ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
- return 0;
- }
- return 1;
- }
- BN_CTX_start(ctx);
- t0 = BN_CTX_get(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- if (t2 == NULL) {
- ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
- || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
- || !BN_GF2m_add(t1, r->X, t1)
- || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
- || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
- || !BN_GF2m_add(t2, t2, s->X)
- || !group->meth->field_mul(group, t1, t1, t2, ctx)
- || !group->meth->field_sqr(group, t2, p->X, ctx)
- || !BN_GF2m_add(t2, p->Y, t2)
- || !group->meth->field_mul(group, t2, t2, t0, ctx)
- || !BN_GF2m_add(t1, t2, t1)
- || !group->meth->field_mul(group, t2, p->X, t0, ctx)
- || !group->meth->field_inv(group, t2, t2, ctx)
- || !group->meth->field_mul(group, t1, t1, t2, ctx)
- || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
- || !BN_GF2m_add(t2, p->X, r->X)
- || !group->meth->field_mul(group, t2, t2, t1, ctx)
- || !BN_GF2m_add(r->Y, p->Y, t2)
- || !BN_one(r->Z))
- goto err;
- r->Z_is_one = 1;
- /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
- BN_set_negative(r->X, 0);
- BN_set_negative(r->Y, 0);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- static
- int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
- const BIGNUM *scalar, size_t num,
- const EC_POINT *points[],
- const BIGNUM *scalars[],
- BN_CTX *ctx)
- {
- int ret = 0;
- EC_POINT *t = NULL;
- /*-
- * We limit use of the ladder only to the following cases:
- * - r := scalar * G
- * Fixed point mul: scalar != NULL && num == 0;
- * - r := scalars[0] * points[0]
- * Variable point mul: scalar == NULL && num == 1;
- * - r := scalar * G + scalars[0] * points[0]
- * used, e.g., in ECDSA verification: scalar != NULL && num == 1
- *
- * In any other case (num > 1) we use the default wNAF implementation.
- *
- * We also let the default implementation handle degenerate cases like group
- * order or cofactor set to 0.
- */
- if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
- return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
- if (scalar != NULL && num == 0)
- /* Fixed point multiplication */
- return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
- if (scalar == NULL && num == 1)
- /* Variable point multiplication */
- return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
- /*-
- * Double point multiplication:
- * r := scalar * G + scalars[0] * points[0]
- */
- if ((t = EC_POINT_new(group)) == NULL) {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
- || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
- || !EC_POINT_add(group, r, t, r, ctx))
- goto err;
- ret = 1;
- err:
- EC_POINT_free(t);
- return ret;
- }
- /*-
- * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
- * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
- * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
- */
- static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
- const BIGNUM *a, BN_CTX *ctx)
- {
- int ret;
- if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
- ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
- return ret;
- }
- const EC_METHOD *EC_GF2m_simple_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_characteristic_two_field,
- ec_GF2m_simple_group_init,
- ec_GF2m_simple_group_finish,
- ec_GF2m_simple_group_clear_finish,
- ec_GF2m_simple_group_copy,
- ec_GF2m_simple_group_set_curve,
- ec_GF2m_simple_group_get_curve,
- ec_GF2m_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GF2m_simple_group_check_discriminant,
- ec_GF2m_simple_point_init,
- ec_GF2m_simple_point_finish,
- ec_GF2m_simple_point_clear_finish,
- ec_GF2m_simple_point_copy,
- ec_GF2m_simple_point_set_to_infinity,
- 0, /* set_Jprojective_coordinates_GFp */
- 0, /* get_Jprojective_coordinates_GFp */
- ec_GF2m_simple_point_set_affine_coordinates,
- ec_GF2m_simple_point_get_affine_coordinates,
- 0, /* point_set_compressed_coordinates */
- 0, /* point2oct */
- 0, /* oct2point */
- ec_GF2m_simple_add,
- ec_GF2m_simple_dbl,
- ec_GF2m_simple_invert,
- ec_GF2m_simple_is_at_infinity,
- ec_GF2m_simple_is_on_curve,
- ec_GF2m_simple_cmp,
- ec_GF2m_simple_make_affine,
- ec_GF2m_simple_points_make_affine,
- ec_GF2m_simple_points_mul,
- 0, /* precompute_mult */
- 0, /* have_precompute_mult */
- ec_GF2m_simple_field_mul,
- ec_GF2m_simple_field_sqr,
- ec_GF2m_simple_field_div,
- ec_GF2m_simple_field_inv,
- 0, /* field_encode */
- 0, /* field_decode */
- 0, /* field_set_to_one */
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- 0, /* field_inverse_mod_ord */
- 0, /* blind_coordinates */
- ec_GF2m_simple_ladder_pre,
- ec_GF2m_simple_ladder_step,
- ec_GF2m_simple_ladder_post
- };
- return &ret;
- }
- #endif
|